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Abstract. Causal Machine Learning has emerged as a powerful tool
for flexibly estimating causal effects from observational data in both in-
dustry and academia. However, causal inference from observational data
relies on untestable assumptions about the data-generating process, such
as the absence of unobserved confounders. When these assumptions are
violated, causal effect estimates may become biased, undermining the
validity of research findings. In these contexts, sensitivity analysis plays
a crucial role, by enabling data scientists to assess the robustness of
their findings to plausible violations of unconfoundedness. This paper
introduces sensitivity analysis and demonstrates its practical relevance
through a (simulated) data example based on a use case at Booking.com.
We focus our presentation on a recently proposed method by [9], which
derives general non-parametric bounds on biases due to omitted vari-
ables, and is fully compatible with (though not limited to) modern infer-
ential tools of Causal Machine Learning. By presenting this use case, we
aim to raise awareness of sensitivity analysis and highlight its importance
in real-world scenarios.

Keywords: Causal Machine Learning · Sensitivity Analysis · Unob-
served Confounding.

1 Introduction

Randomized controlled trials (RCTs) (also commonly known in industry as “A/B
tests,” when the treatment consists of two categories) are widely regarded as the
gold standard for estimating causal effects. In an RCT, participants are randomly
assigned to either a control group (A) or a treatment group (B), thus preventing
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individuals from self-selecting into a treatment status. This randomization al-
lows for clear attribution of any differences in outcomes between groups directly
to the treatment itself, rather than to other confounding factors. However, due
to constraints such as high costs, ethical concerns, or practical limitations, con-
ducting such experiments is often infeasible. In these situations, data analysts
may then turn to observational data to infer causal effects.

Unlike experimental studies, observational studies are based on historically
collected data, such as past transactions, with no experimental control over the
treatment assignment process. In these studies, the treatment and outcome may
be associated even without a true causal relationship. This association can occur
because individuals’ treatment choices and outcomes may both be influenced by
confounding factors. To draw valid causal inferences, it is essential to account
for these factors effectively. One widely used approach to address these concerns
is to adjust for observed covariates, aiming to mitigate confounding biases. This
can be done flexibly and efficiently with modern tools of Causal Machine Learn-
ing [10]. The validity of this approach, however, still relies on the assumption
of unconfoundedness, also known as “selection-on-observables” [1]. This assump-
tion posits that, conditional on the observed covariates, the treatment can be
considered as good as randomly assigned. Importantly, it assumes no unobserved
confounding remains. What if this is not true? How biased would our estimates
be? To illustrate these concepts, we will explore a practical simulated example
inspired by a real use case at Booking.com.6 Booking.com is one of the world’s
leading digital travel platforms and offers not only accommodations, but also
other products such as flights, rental cars, and other travel-related services. In
this application, we are concerned with estimating the causal effect of cross-
selling products on customer relationship. In general, cross-selling, i.e., selling
additional products to customers that purchase one product, is an important
marketing strategy to increase revenue, customer satisfaction and customer loy-
alty in the long term. In our analysis, the treatment of interest is whether a
customer books an ancillary product in addition to their accommodation book-
ing. The outcome measures the number of follow-up accommodation bookings
made within six months after the initial booking. Note an A/B test, which
could provide direct experimental evidence of the effect of the treatment on the
outcome, is not feasible in this context due to high costs and ethical concerns
associated with forcing customers to accept products they may not be interested
in.7

Given the constraints of not being able to conduct a randomized controlled
trial, we rely on observational data, where the treatment assignment stems from
customers’ choices rather than random allocation. This approach introduces po-
tential confounding factors, as customers’ decisions to book ancillary products

6 We note that the use case is presented in a stylized way. Moreover, due to confiden-
tiality concerns, and for the sake of reproducibility, the empirical analysis is based
on a simulated data set. The results of this simulation cannot be used to recover the
findings from the actual use case at Booking.com.

7 Other research designs, such as encouragement designs, could be considered.
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are influenced by various factors that may also impact their follow-up bookings.
For example, the purpose of a trip — such as whether it is for business or leisure
— can significantly affect the likelihood of purchasing additional services like a
taxi transfer. Business travelers may be more inclined to book such services com-
pared to leisure travelers. However, these same factors also influence the number
of follow-up accommodation bookings. To draw valid causal inferences from ob-
servational data, it is thus crucial to account for these confounding variables to
isolate the true effect of the treatment. But what if some confounding factors
were not measured?

A key concern in this application is whether the observed variables are suf-
ficient to account for all relevant confounding factors, or if there are any unob-
served variables that could bias the results. For instance, prior customer loyalty
might be a significant factor influencing both the decision to purchase ancillary
products and the frequency of follow-up bookings. If this factor is not adequately
captured in the data, the assumption of unconfoundedness — where treatment
is as good as randomly assigned given observed covariates — might be violated.
Sensitivity analysis can then be used to assess how robust our conclusions are
to such violations. In some cases, it may suggest that causal inferences are still
warranted, even if we did not account perfectly for all confounding factors, such
as customer loyalty. Our goal in this paper is to introduce the concepts of causal
effect identification, estimation and sensitivity analysis, using the flexible tools
of Causal Machine Learning, through this practical example.

The rest of the paper is organized as follows. Section 2, briefly reviews identi-
fication via covariate adjustment, and estimation using Debiased Machine Learn-
ing (DML) [8]. Section 3, motivates sensitivity analysis, and reviews the recent
proposal of [9] for sensitivity analysis in Causal Machine Learning. Section 4
demonstrates this approach in the use case from Booking.com. We complement
our analysis with a reproducible notebook, and describe the implementation
using the DoubleML Python library in the Supplementary Material.

2 Observational Causal Inference

2.1 Potential outcomes and causal parameters

Causal inference starts by defining the causal effects of interest, which measure
how experimental manipulations of a treatment D would influence an outcome
Y . These effects are often formulated in terms of potential outcomes. For instance,
consider a binary treatment variable, where D = 1 denotes treatment, and D =
0 denotes the control condition. Here, we write Y (1) to denote the potential
outcome of an individual if, perhaps contrary to fact, they were assigned to
the treatment condition; analogously, Y (0) denotes the potential outcome of
an individual if, perhaps contrary to fact, they were assigned to the control
condition. The Average Treatment Effect (ATE) measures the average difference
in expected outcomes if the treatment were applied to the entire population
compared to this average if the treatment were instead withheld:

θ = E[Y (1)]− E[Y (0)].
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Similarly, the Average Treatment effect on the Treated (ATT) measures the
average treatment effect specifically for those individuals who actually receive
the treatment:

θ0 = E[Y (1) | D = 1]− E[Y (0) | D = 1].

Here we will focus on the ATT, as it is the key causal parameter for our
business use case at Booking.com. The ATT measures the average impact on
follow-up bookings that results from booking an ancillary product, specifically
among those who have actually made such a booking. If the treatment effect
varies across individuals and individuals self-select into the treatment, the ATT
may differ from the ATE.

Note, however, that we do not have any data on the potential outcomes
under different experimental conditions. We have only observational data on the
actual outcome Y , treatment D and observed covariates X. In order to estimate
the ATT, we need assumptions that connect the observational data with the
counterfactual parameter we are interested in. The task of deciding whether a
set of assumptions is sufficient to recover the causal parameter of interest is often
referred to as an identification problem.

2.2 Identification under unconfoundedness

The ATT can be identified from the distribution of observed data Ws = (Y,D,X)
under the following assumptions:

1. Unconfoundedness: {Y (0), Y (1)} ⊥⊥ D|X,
2. Overlap: 0 < P (D = 1|X) < 1,
3. Consistency : Y = Y (D).

Unconfoundedness states that given observed covariates X, the treatment is in-
dependent of potential outcomes, implying no unobserved selection mechanisms.
Overlap ensures a non-zero probability of receiving treatment for all covariate
values. Consistency connects observed outcomes with potential outcomes, and
implicitly assumes a well-defined treatment without spillover effects or hidden
variations in the treatment.8 The derivation goes as follows:

θ0 = E[Y (1) | D = 1]− E[Y (0) | D = 1] (1)
= E[Y (1) | D = 1]− E[E[Y (0) | D = 1, X]|D = 1] (2)
= E[Y (1) | D = 1]− E[E[Y (0) | D = 0, X]|D = 1] (3)
= E[Y | D = 1]− E[E[Y | D = 0, X]|D = 1] (4)

The first line restates the definition of the ATT. The second line uses the law
of total probability (and overlap to avoid division by zero). The third line ap-
plies the unconfoundedness assumption, and the fourth line uses the consistency
assumption.
8 This is sometimes also called SUTVA—the Stable Unit Treatment Value Assump-

tion.
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We have thus established that, given the stated assumptions, the counter-
factual parameter θ0 can be expressed as a population quantity based solely on
observational data, specifically:

θ0 = E[Y | D = 1]− E[E[Y | D = 0, X]|D = 1].

In practice, however, we do not have access to population quantities. Therefore,
we must estimate θ0 from finite samples.

2.3 Estimation with Causal ML

Various estimation procedures can be used for estimating causal effects from
data, including matching, regression, and propensity-score-based methods. Here
we focus on causal estimation using machine learning (ML) algorithms. While
ML methods can be powerful, their naive application may introduce biases in
the estimation procedure that prevent proper uncertainty quantification and
statistical inference. To illustrate this point, let us rewrite the ATT as:

θ0 = E[Y |D = 1]− E[gs(0, X)|D = 1],

where here gs(D,X) := E[Y |D,X] is the conditional expectation of Y given
D and X. The first component of the ATT, namely, E[Y |D = 1], can be easily
estimated from data with the sample average of the outcome in the treated group.
The second component of the ATT, on the other hand, can be harder to estimate.
The function gs(D,X) can be complex or high-dimensional, motivating the use
of ML algorithms. A natural estimator for this quantity would be to directly
employ ML estimators for gs(D,X) and estimate the component E[gs(0, X)|D =
1], of the ATT by taking the empirical mean of ĝs(0, X) in the subgroup of
treated units. This, however, would lead to severe biases and slow convergence,
with estimation errors that are not asymptotically normally distributed [8, 3, 2],
precluding standard statistical inference.

Hence, ML-based causal estimation requires certain adjustments to work in
practice. A leading framework for such adjustments is the Double/Debiased Ma-
chine Learning approach proposed [8], which is based on three key ingredients
[3]:9

1. Neyman Orthogonal Scores,
2. High-quality Machine Learners,
3. Sample Splitting.

Neyman orthogonality alleviates the regularization bias problem by reducing
the sensitivity of the target parameter to estimation errors of nuisance functions
such as gs(D,X). Perhaps counter-intuitively, this often involves rewriting the
target parameter as a function of two nuisance parameters instead of one. In the
9 Here, we briefly sketch the building blocks of DML. For more a more formal intro-

duction, we refer to [8]. An intuitive introduction with multiple examples is available
from [3].
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ATT example, for instance, it involves estimating the propensity score ms(X) :=
E[D|X], and estimating the target parameter with a combination of regression
adjustment and inverse probability of treatment weighting. Neyman-orthogonal
scores are often available from the literature — several examples, including the
ATT, are summarized in [8].

The second key ingredient for DML to work is the quality of the machine
learning algorithms used to estimate the nuisance parameters, in terms of conver-
gence rates. In general, they need to have convergence rates faster than n−1/4 to
guarantee that the higher-order biases vanish. Structural conditions for achieving
these learning rates are known for many ML estimators (e.g. the Lasso learner
under sparsity). In practice this also demands the careful choice of learners and
hyperparameters [4].

The third ingredient, sample splitting, requires that the ML estimation of the
nuisance parameters are fitted on a partition of the data set separate from the
data used for calculating the target causal parameter. The role of the train and
test samples can be swapped, which is called cross-fitting — the explicit DML
algorithm is presented in the Supplementary Material. [8] then show that the
DML causal estimator θ̂0, built on these three ingredients, concentrates around
the true value θ0 and is asymptotically normal, thus enabling standard statistical
inference.

3 Sensitivity Analysis

3.1 Background

In the previous section, we discussed assumptions that allowed us to estimate the
Average Treatment Effect on the Treated from observational data, specifically
unconfoundedness, overlap, and consistency. However, in general, observed co-
variates X might not be sufficient to control for confounding due to the presence
of unobserved confounders. Figure 1 illustrates a stylized confounding scenario
with both observed confounding X and unobserved confounding U , which pre-
vents an unbiased estimation of the causal parameter of interest.

When the unconfoundedness assumption is not fully met, sensitivity analysis
provides a way to understand the potential impact of unobserved confound-
ing. The goal is to quantify the influence of unobserved confounders through
sensitivity parameters, which measure the strength of confounding in both the
treatment assignment mechanism and the outcome equation (illustrated by the
red and blue arrows in Figure 1). This usually involves varying sensitivity param-
eters and assessing how different scenarios impact our causal effect estimates.
This can be done through numerical simulations and recalculations of the causal
effect estimate under different scenarios, or by positing parameter values into an
analytical bias formula.

There is an immense literature on sensitivity analysis spanning the fields of
statistics, econometrics, and computer science [16, 29, 27, 18, 28, 23, 6, 20–22, 30,
5, 19, 7, 17, 25, 26, 15, 13, 11, 32, 14]. This body of work includes a variety of ap-
proaches, each with different assumptions regarding the strength and nature of
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Fig. 1. A stylized DAG illustrating an observed (D ← X → Y ) and unobserved (D ←
U → Y ) confounding relationship.

unobserved confounding, as well as the specific causal parameters they address.
Due to this diversity and complexity, a comprehensive and exhaustive survey
of all methods is beyond the scope of this work. Here we focus on the omit-
ted variable bias approach of [9]. This approach is nonparametric, while also
permitting (semi-)parametric restrictions (such as partial linearity) when such
assumptions are made. It covers a broad range of common causal parameters
often investigated in causal inference studies, such as averages of potential out-
comes, average treatment effects, average causal derivatives, and policy effects
resulting from covariate shifts. Notably, it covers the Average Treatment Effect
on the Treated relevant to our use case. This approach also makes it possible
to use modern tools of Causal ML for estimation and inference, as described in
Section 2.3.

3.2 Omitted Variable Bias in Causal ML

The omitted variable bias approach of [9] starts by positing that unconfounded-
ness holds given access to the full data W = {Y,D,X,U}, including the unob-
served confounders U , as in Figure 1. Had we had access to this data, we would
be able to estimate the target causal parameter of interest (also called the long
parameter), i.e, the ATT corresponding to an adjustment by X and U ,

θ0 = E[Y |D = 1]− E[E[Y |D = 0, X, U ]|D = 1].

However, since U is unobserved, the data scientist has access to the observ-
able data only, i.e., Ws = {Y,D,X}. Similarly, she can only estimate the short
parameter θs, which adjusts for X, but U is omitted from the regression equation,

θs = E[Y |D = 1]− E[E[Y |D = 0, X]|D = 1].

The goal is then to bound the bias due to the omission of U , that is, the difference
in the long and short estimands:

bias = θs − θ0. (5)
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[9] show that this bias can be expressed as,

bias2 = ρ2C2
Y C

2
DS2, (6)

where here ρ2, C2
Y and C2

D are sensitivity parameters that must be constrained
by hypothesis that limit the strength of unobserved confounding, and S2 is a
scaling factor which is estimable from the observed data Ws. In fact, leveraging
the Riesz representation theorem, [9] show that the same bias formula holds more
generally for any target parameter that can expressed as a linear functional of the
conditional expectation function of the outcome. Here we focus on the ATT as
it is the relevant parameter for our use case. The general formulation is reviewed
in the Supplemental Material.

For the ATT, these sensitivity parameters have the following interpretation.
The parameter ρ2 ∈ [0, 1] measures the correlation between the confounding
errors in the outcome regression E[Y | D,X,U ] and the treatment regression
E[D | X,U ]. For an unobserved variable U to introduce bias in the ATT esti-
mation, it is not enough for U to simply explain variations in both treatment
and outcome; the errors in these regressions need to be systematically related.
In the absence of additional assumptions about the data-generating process,
this parameter is typically set to its upper bound of 1, though less conservative
scenarios can also be considered.

The parameters C2
Y and C2

D quantify how confounding influences the outcome
and treatment assignment mechanisms, respectively. They parameterize the blue
and red arrows of Figure 1 in terms of the relevant quantities for assessing the
omitted variable bias of the ATT. Specifically, C2

Y ∈ [0, 1] is defined as:

C2
Y :=

Var(E[Y | D,X,U ])− Var(E[Y | D,X])

Var(Y )− Var(E[Y | D,X])
=: R2

Y .

This quantity, which we also denote by R2
Y , represents the (nonparametric) par-

tial R2 of U with respect to Y . In other words, it measures the proportion of
the residual variation in the outcome Y that is explained by the unobserved
confounder U after accounting for the variation explained by the observed co-
variates D and X. Notably, R2

Y can be set to its upper bound of 1, and this still
results in a finite bias.

Finally, the parameter C2
D ∈ [0,∞) is given by,

C2
D =

E [O(X,U)]− E [O(X)]

E [O(X)]
,

where O(X,U) := P (D=1|X,U)
1−P (D=1|X,U) and O(X) := P (D=1|X)

1−P (D=1|X) represent the odds of
receiving treatment, conditional on {X,U} and X, respectively. This quantifies
the increase in the average odds of receiving treatment due to the presence
of the unobserved confounder U . In other words, C2

D measures how much the
unobserved confounder U improves our ability to predict, on average, whether
individuals are in the treated or control group, compared to when we only have
access to the observed confounders.
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Since C2
D is unbounded, it may be useful to re-express it as an R2-like mea-

sure, similar to R2
Y , for interpretability purposes:

C2
D =

R2
D

1−R2
D

,

where
R2

D :=
E [O(X,U)]− E [O(X)]

E [O(X,U)]
∈ [0, 1].

The R2
D parameter quantifies the proportion of the average odds of receiving

treatment explained by the unobserved confounder U , after accounting for what
is explained by X. Unlike the other parameters, which can be set to a worst-case
value of 1, R2

D must always be less than 1 to ensure that the bias remains finite.
That is, in order to have informative bounds, we always need to constraint how
much confounders affect the treatment assignment.

Estimation and inference All results above hold for population parameters. In
practice, we need to estimate the bounds on the target parameter from finite
samples. [9] show that estimation and inference for sensitivity analysis can be
performed using the same principles of Double/Debiased Machine Learning, as
briefly discussed in Section 2.3.

Robustness values The previous bias formula allow us to assess how much bias
any confounding scenario, as given by specific values of sensitivity parameters
R2

Y and R2
D, would cause. Sometimes, however, researchers may not have a

particular scenario in mind. In such cases, users can still report robustness values
[13, 9], summarising the minimal strength that confounders would need to have
in order to revert the research conclusions. Specifically, the robustness value
RVa measures the minimum upper bound on both parameters, R2

Y ≤ RVa and
R2

D ≤ RVa, such that the confidence bounds for θ0 would include a particular
value of interest, such as zero, at the significance level a. RVa thus provide a
quick summary of the robustness of an estimated effect—any confounder with
R2

Y < RVa and R2
D < RVa is logically incapable of explaining away the observed

effect.

Benchmarking Sometimes researchers may not have a good idea about the ab-
solute value of the strength of unobserved confounders, but may instead have a
notion of their relative importance when compared to key observed covariates.
When that is the case, researchers may use the tool of benchmarking [23, 13,
9], to compute bounds on the strength of unobserved variables if they were as
strong or stronger than certain observed covariates.

4 Sensitivity Analysis in a Use Case from Booking.com

We now illustrate the application of the previous sensitivity analysis framework
in the use case at Booking.com that was introduced earlier. In this section, we
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Fig. 2. Example DAG in the use case.

provide more details on the data set considered and comment on the practi-
cal challenges that occurred while applying the omitted variable bias frame-
work of [9]. We complement this analysis with a demonstration notebook that
leads through the major steps of the analysis based on the implementation with
DoubleML for Python [2].10

The analysis was based on a pre-analysis plan that defined the sample com-
position, potential hypotheses, and the definition of the treatment and outcome
variable prior to the actual estimation step. Customers are defined as visitors of
the Booking.com websites and users of the app who have completed an accom-
modation booking within a time window of six months and have given explicit
consent to the usage of their data. The data set is organized in terms of trips, i.e.,
the purchased ancillary products, were booked for the same trip as the accom-
modation booking. The original data set is relatively large with a total number
of observations > 20 million trips considered. The outcome variable is the num-
ber of follow-up bookings of the core product accommodation that occurred in
a time window of 6 months after the first study period.

The causal analysis was organized according to the workflow displayed in
Figure 3. The first step involves a clear and actionable formulation of the causal
question, which is derived from business and management considerations. The
primary objective of the evaluation was to determine whether the purchase of an-
cillary products positively impacts customer relationship, as determined by the
ATT. A more precise understanding of the causal model and the potential con-
founding variables that could threaten identification in our use case was achieved
by brainstorming directed acyclic graphs (DAGs) representing the various causal
relationships of interest. Although identifying a single DAG that perfectly fits

10 [Insert url here]. More information on the implementation is provided in the
Supplementary Material.
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Fig. 3. A workflow for causal analysis.

a specific causal problem can be challenging, the process of modeling and dis-
cussing these relationships is crucial for formulating the explicit assumptions
necessary to identify the causal effect of interest [12]. Figure 2 shows a DAG
that maps the main confounders that should be considered for identification via
covariate adjustment. Note that other approaches to identification, such as in-
strumental variables, could also be used, but for simplicity, we do not consider
them here. As the DAG shows, the main confounding variables are Seasonality,
Purpose of trip, Membership account, Membership level, and Customer Loyalty,
which is not measured, but partially captured by observed covariates. If the ar-
rows in orange do not exist, then adjusting for the observed confounders would
be sufficient for identification of the ATT. On the other hand, if these arrows do
exist, this means observed variables are not sufficient to account for customer
loyalty, and residual biases may still remain.

Assuming unconfoundedness holds, the second step in the workflow involves
estimation, which has been performed using Double Machine Learning through
the DoubleML implementation [2]. For estimating the nuisance functions, LightGBM
[24] was employed, with parameter tuning based on cross-validation. We obtained
an estimate for the ATT of 0.123 with a confidence interval of [0.107, 0.139],
indicating a positive, significant, and substantial causal effect for those who pur-
chased an ancillary product. We reiterate that the numerical results presented
here do not reflect actual results from the original analysis at Booking.com. The
results are based on a simulated data example, which can be replicated using
the accompanying notebook.

The previous estimate relies on the assumption of unconfoundedness; specif-
ically it assumes that the orange arrows in the DAG shown in Figure 2 do not
exist. The third step of the workflow thus involves performing a sensitivity anal-
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Sensitivity Analysis: Summary
Significance Level level=0.95

Sensitivity parameters R2
Y =0.110; R2

D= .003, ρ=1.0
Bounds with CI

CI lower theta lower theta theta upper CI upper
d 0.070 0.084 0.123 0.162 0.176

Robustness Values
H_0 RV (%) RVa (%)

d 0.0 5.391 4.816
Table 1. Results from sensitivity analysis based on preferred benchmarking setting.

ysis with the tools of [9].11 The results from the sensitivity analysis are presented
in Table 1. In the use case, loyalty-based selection into ancillary product pur-
chases are expected to lead to an overestimation of the ATT. Hence, we focus on
the lower bound for the ATT and the corresponding confidence bounds to assess
whether the effect estimate would be equal or even smaller than zero or become
non-significant in a specific confounding scenario. A confounding scenario is de-
fined in terms of fixed values for the sensitivity parameters R2

Y and R2
D. These

values can either be derived from domain-specific reasoning or being based on
benchmarking exercises. In the absence of a specific scenario, the robustness
values provide a concise summary of the robustness of the ATT estimate. For
instance, the RV = 5.391% shows that unobserved confounders that explain less
than 5.391% of the residual variation of the outcome and of the odds of treat-
ment, are logically incapable of bringing the point estimate of the ATT to zero.
If we consider sampling uncertainty, this number reduces to RVa = 4.816% (at
the 5% significance level).

Table 1 also shows our preferred confounding scenario, based on bench-
marking unobserved confounding against an observed covariate of intermediate
strength. In particular, it illustrates how much bias an omitted variable would
cause, if it were as strong as “membership variables.” These variables were chosen
because they are similar in nature to customer loyalty. This scenario results in
calibrated values for the sensitivity parameters of R2

Y = 0.110 and R2
D = 0.003.

In that scenario, the lower bound of the ATT is 0.084 and the bound for the lower
confidence limit is 0.070. This is interpreted as evidence in favor of a positive
ATT, which would be robust to unobserved confounding similar the benchmark-
ing variable. Note that in this simulated example, the true value of the ATT
is 0.070. Thus, in this particular case, the lower limit of the confidence bound
provides a better approximation of the true value when compared to a naive
estimate that assumes unconfoundedness. In practice, however, the truth is not
known. In the actual use case, we also considered stronger, but more implausible,
confounding scenarios, benchmarking against all loyalty proxy measures. In the
most extreme setting, the ATT was not found to be robust to confounding bias,

11 We also employed other sensitivity approaches e.g., [31]. A comparison is available
in the accompanying notebook.
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Fig. 4. Contour plot for sensitivity analysis in the cross-selling use case with bench-
marking scenario (red point) and the robustness value (white cross).

i.e., the lower bound estimates became negative. An appealing way to visual-
ize multiple, possibly asymmetric confounding scenarios is through a sensitivity
contour plot [23, 13, 14]. In Figure 4, a contour line illustrates all combinations
of R2

Y and R2
D (denoted here as cf_y and cf_d) that result in the same lower

bias limit of the confidence bound for the causal parameter. The conclusions
from sensitivity analysis crucially depends on whether the confounding scenar-
ios are realistic and relevant in a specific use case. Data scientists and domain
experts evaluated the plausibility of the different scenarios. They concluded that
benchmarking against all loyalty measures would correspond to an implausibly
strong confounding setting. The results of multiple benchmarking exercises of
intermediate strengths led to similar results and, hence, to the conclusion of a
rather robust and positive ATT. Finally, integrating sensitivity analysis into the
causal analysis workflow has significantly impacted both the analysis and com-
munication of results with business stakeholders. Sensitivity considerations have
clarified the fundamental challenges of causal inference with non-experimental
data, emphasizing the importance of understanding observational causal anal-
ysis and its underlying assumptions. Additionally, sensitivity analysis offered
quantitative insights that went beyond intuitive and anecdotal critiques of the
unconfoundedness assumption. It provided a clearer understanding of how sig-
nificant violations of this assumption might be, using domain-specific knowledge
relevant to the use case. The sensitivity framework includes practical steps such
as calibrating parameters and evaluating benchmark scenarios. By applying sen-
sitivity analysis, data scientists and business stakeholders have gained practical
experience that can be applied to future cases.
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5 Conclusion and Outlook

In this paper, we introduced causal estimation and sensitivity analysis using
machine learning techniques through an applied example that mimics a use case
of Booking.com. As ML-based causal analysis becomes increasingly prevalent in
both academic research and industry applications, integrating sensitivity anal-
ysis is essential. It explicitly addresses the risk of violations of identification
assumptions, transparently revealing the threats to the validity of observational
studies. The framework developed by [9] offers a powerful formal approach to
managing sensitivity concerns, while being fully compatible with modern Causal
Machine Learning. By demonstrating this approach through a practical exam-
ple, we aim to highlight its utility and relevance, encouraging broader adoption
of sensitivity analysis in applied research.
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Supplementary Material to Sensitivity Analysis
for Causal ML: A Use Case at Booking.com

1 DML Algorithm

The DML algorithm proceeds as follows. Consider a Neyman orthogonal score
ψ(θ,W ; η), where η = (g, α). Then, given a random sample (Wi)

N
i=1 of data

vectors, (1) randomly partition it into folds (Iℓ)
L
ℓ=1 of approximately equal size.

Denote by Icℓ the complement of Iℓ. (2) For each ℓ, estimate η̂ℓ = (ĝℓ, m̂ℓ) from
observations in Icℓ . (3) Estimate θ0 as a root of:

N−1
L∑

ℓ=1

∑
i∈Iℓ

ψ(θ,Wi; η̂ℓ) = 0.

2 General Sensitivity Analysis

Overall, we are interested in the causal parameter θ0 that can be identified as a
linear functional of the long regression function g0 := E[Y |D,X,U ]:

θ0 = E[m(W, g0)],

where m is a formula that is affine in g0, W denotes the full data vector, W =
(Y,D,X,U).1

The key idea of the formulation in [1] is to express the long parameter θ0 as
the inner product of the long regression, and weights α0,

θ0 = E[m(W, g0)] = E[g0(W )α0(W )],

where α0(W ) is called the Riesz representer of θ0.
The Riesz representer plays a crucial role for causal and debiased ML as it

implements a correction for the regularization bias that arises from using ML
learners, see [3]. In many cases, it is possible to obtain an analytical expression
for the Riesz representer. In cases where an analytical debiased presentation is
not available, an automated procedure can be performed [3].

The expression for the long parameter θ0 is based on the complete data that
includes information on the unobserved confounder(s). To compare the value
of the feasible short estimand to the long parameter, we also reformulate θs in
terms of its Riesz representation,

θs = E[m(Ws, gs)] = E[gs(Ws)αs(Ws)],

1 Here, we abstract from the technical details. For a complete presentation, we refer
to [1].



2

where the subscript s indicates that the quantities refer to the limited available
data in the short model, namely, gs := E[Y |D,X] and Ws = (Y,D,X).

[1] show that the difference between the long and short parameters is given
by the covariance of approximation errors in the regression function and the
Riesz representer,

θs − θ0 = E
[
(gs − g0)(αs − α0)

]
.

Furthermore, the squared bias can be further expressed as,

|θs − θ0|2 = ρ2E
[
(g0 − gs)

2
]
E
[
(α0 − αs)

2
]
,

where ρ2 ∈ [0, 1], is given by the correlation of errors,

ρ2 := Cor2(g0 − gs, α0 − αs).

Intuitively, the bias depends on the additional variation that latent variables
create in the long regression and the Riesz representer. This bias formula can
be further expressed in terms of sensitivity parameters based on R2 measures,
which are more directly interpretable.

C2
Y :=

E(g0 − gs)
2

E(Y − gs)2
= R2

Y−gs∼g0−gs

C2
D :=

Eα2
0 − Eα2

s

Eα2
s

=
1−R2

α0∼αs

R2
α0∼αs

.

In a nonparametric model, C2
Y = R2

Y−gs∼g0−gs
denotes the (nonparametric)

partial R2 of the confounders with the outcome. A similar interpretation applies
to 1−R2

α0∼αs
, but with respect to the Riesz representer. The term 1−R2

α0∼αs

measures the share of the residual variation in the long version of the Riesz
representer that is explained by the confounding variable(s) U . An appealing
feature of these sensitivity parameters is that they are naturally restricted to a
range between 0 and 1, which improves the interpretability and applicability of
the sensitivity framework.

The interpretation of these sensitivity parameters can be further refined de-
pending on the causal parameter of interest, and whether additional paramet-
ric assumptions are made. For example, in the setting of prior work by [4],
where the target parameter is a linear projection coefficient, both parameters
reduce to traditional linear projection partial R2 measures, C2

Y = R2
Y∼U |D,X

and 1 − R2
α0∼αs

= R2
D∼U |X , that is, the partial R2 of U with the treatment D

and the outcome Y . This partial R2 interpretation is still preserved in a high-
dimensional partially linear regression model, cf. [1] and [2].

We now provide other examples below.
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3 Example: ATE

In the example of a nonparametric causal model under unconfoundedness, we
have that the ATE is defined as

θ0 = E[Y (1)− Y (0)] = E[g0(1, X, U)− g0(0, X, U)︸ ︷︷ ︸
:=m(W,g0)

]. (1)

The long regression function is

g0(d,X,U) = E[Y |D = d,X,U ],

with the short version being

gs(d,X) = E[Y |D = d,X].

The long Riesz representer for the ATE is

α0(W ) =
D

m0(X,U)
− 1−D

1−m0(X,U)
,

where m0(X,U) := E[D|X,U ] = P (D = 1|X,U) is the long propensity score.
Note the RR corresponds to the well known Horvitz-Thompson weights of inverse
probability weighting. The short Riesz representer is given by the same weights,
excluding U , that is,

αs(Ws) =
D

ms(X)
− 1−D

1−ms(X)
,

where ms(X) := E[D|X] = P (D = 1|X) refers to the propensity score without
the unobserved confounding variables U .

The sensitivity parameters for the ATE examples then take the following
form

C2
Y :=

Var(E[Y |D,X,U ])− Var(E[Y |D,X])

Var(Y )− Var(E[Y |D,X])
,

which equals the non-parametric partial R2 of Y with U ; and,

1−R2
α∼αs

=
E[1/Var(D|X,U)]− E[1/Var(D|X)]

E[1/Var(D|X,U)]
,

which has an interpretation as the gains in precision in the treatment equation
due to U .

4 Example: ATT

Here we provide the Riesz representers for the ATT example discussed in the
main text:

α0(W ) =

(
D

m0(X,U)
− 1−D

1−m0(X,U)

)(
m0(X,U)

p

)
,

αs(Ws) =

(
D

ms(X)
− 1−D

1−ms(X)

)(
ms(X)

p

)
,
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Fig. 1. Contour plot for sensitivity analysis in the cross-selling use case with bench-
marking scenario (red point) and the robustness value (white cross) using a calibrated
value obtained from benchmarking, ρ = 0.327.

where p := P (D = 1). The interpretation of C2
Y , C2

D and 1−R2
α∼αs

are given in
the main text. Note that for simplicity, and to avoid discussing Riesz represen-
tation in the main text, the quantity corresponding to 1−R2

α∼αs
of the general

formulation is referred simply as R2
D.

5 Additional Empirical Results

In the main text, we have not elaborated on the role of the parameter ρ due
to space restrictions. The sensitivity parameters C2

D and C2
Y serve as measures

for the variance in the outcome and treatment variable due to an unobserved
confounder. The implications of the confounder are not only depending on those
quantities, but also to the degree of how much these variations are related to each
other. In the case, where U creates variation inD, which, however, is independent
from the variation in Y that is induced by U , we would have ρ = 0, i.e., such a
setting would not alter the estimate of the causal estimate. In empirical examples,
the value of ρ can be calibrated, for example through benchmarking. In our
analyses, we usually started with the setting of ρ = 1 and reduced the value
down to the value that was calibrated using benchmarking. Figure 1 illustrates
one example with a calibrated value for ρ = 0.327, which as been obtained from
benchmarking. In line with the general intuition, the results are less conservative.

The contour plot in Figure 4 refers to the plug-in estimate of the lower bound
of the ATT. It is also possible to construct similar contour plot for the lower
limit of the confidence bound of the ATT.
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6 Sensitivity Analysis with the DoubleML library in
Python

The Python library DoubleML implements the approach of [1] for various causal
models, including the nonparametric treatment effect model and a partially lin-
ear regression model. Comprehensive documentation and a detailed user guide
are available on the project’s webpage https://docs.doubleml.org/stable/index.html.
After running a causal analysis in DoubleML, i.e., after instantiation and fitting
of a causal model2, it is possible to perform the sensitivity analysis we discussed
here by calling sensitivity_analysis(), which takes fixed values for the sen-
sitivity parameters cf_d and cf_y as input and returns the corresponding bias
bounds together with robustness values.3 The values theta lower and theta
upper refer to the point estimates of lower bound and upper bound on the causal
parameter (for example the ATT or ATE). The values CI lower and CI upper
indicate confidence intervals for the bounds of the causal parameter, thus ac-
counting for sampling uncertainty. The robustness values RV and RVa indicate
the minimum upper bound on both sensitivity parameters that would suffice to
bring the point estimate (or lower limit of the confidence interval) down to a
value of zero. Contour plots can be generated by calling sensitivity_plot().
It is possible to manually add confounding scenarios that are then marked by
points in the plot. sensitivity_benchmark() implements the benchmarking
procedure by repeating the causal estimation by omitting the candidate bench-
mark variables. The output provides the values for sensitivity parameters based
on comparisons against observed covariates.

2 See the workflow at https://docs.doubleml.org/stable/workflow/workflow.html
3 Note here cfy and cfd refer to R2

Y = C2
Y and R2

D = 1−R2
α∼αs

parameters.
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