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Outline

1. What is causal inference? 

2. Observational causal inference (internal validity) 

3. Transportability of causal effects 

4. Recovering from selection bias 

5. Data fusion
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What is causal inference?
Causal assumptions ➞ Causal conclusions
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We will go over each of these for TR and SB problems. But 
first a quick review.



Observational Causal Inference
Observational Distribution ➞ Experimental Distribution
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Observational causal inference

1) What do we want to know?
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- A partial specification of the causal model: exclusion restrictions, 
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2) What data do we have?
- Observational data (joint distribution) from the population of interest

P(Y, X, Z, …)

We need a language to formally represent what we want to know, the data 
we have and what we already know.

Structural models: combine the power of potential outcomes, structural 
equations, and graphs.
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The structural model
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The structural model is our oracle. With a fully specified structural model we 
can answer any causal or counterfactual question.

Causal (and counterfactual) quantities are defined in terms of our model.

Functional  assignments

Z = fz(Uz)
X = fx(Z, Ux)
Y = fy(X, Z, Uy)

M : P(Uz, Ux, Uy)

Distribution unobserved factors

P :

E[Yx] = E[Y |do(x)] = E[ fy(x, Z, Uy)]

The  expectation of Y in the modified 
model where X is experimentally set to x.

Z = fz(Uz)
X = x
Y = fy(X, Z, Uy)

Mx :
do(x)
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Encoding what we know: causal diagrams
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Z = fz(Uz)
X = fx(Z, Ux)
Y = fy(X, Z, Uy)

Functional  assignments

P(Uz, Ux, Uy) = P(Uz, Ux)P(Uy)

Distribution unobserved factors

M :

P :

G :

Causal diagrams provide a nonparametric, qualitative partial specification of 
a causal model. In its basic form, it encodes:
1. Absence of direct effects between variables (exclusion restrictions);
2.Absence of unobserved common causes between variables 
(independence restrictions).
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Encoding what we know: causal diagrams

!9

The question of whether our partial understanding + the data we have is 
sufficient for answering our query is known as the identification problem.

Z = fz(Uz)
X = fx(Z, Ux)
Y = fy(X, Z, Uy)

Functional  assignments

P(Uz, Ux, Uy) = P(Uz, Ux)P(Uy)

Distribution unobserved factors

M :

P :

G :

Causal diagrams provide a nonparametric, qualitative partial specification of 
a causal model. In its basic form, it encodes:
1. Absence of direct effects between variables (exclusion restrictions);
2.Absence of unobserved common causes between variables 
(independence restrictions).
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G :

We have data from P(Y, X, Z):
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Complete solution: do-calculus

!11

The previous derivation showcases the (simplified) manipulation rules you 
need to know for massaging causal expressions (+ basic probability theory).

(Y ⊥⊥ X |Z)GX
⟹ P(y |do(x), z) = P(y |x, z)GX :

(Z ⊥⊥ X)GX
⟹ P(z |do(x)) = P(z)GX :

If you block all confounding paths, seeing = doing. 
(= checking indep. restriction)

You can drop/include actions if there is no causal 
path from manipulated variable to target variable.  
(= checking exclusion restriction)

This is the do-calculus (rule 1 can be derived from these two). Any identifiable 
causal effect can be derived via an application of those simple rules.



We also have complete algorithms: completeness assures us that, if we can't 
find a solution, it is impossible to identify the effect without extra 
assumptions. That is, no other method can do better.
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Complete solution: do-calculus
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The previous derivation showcases the (simplified) manipulation rules you 
need to know for massaging causal expressions (+ basic probability theory).

(Y ⊥⊥ X |Z)GX
⟹ P(y |do(x), z) = P(y |x, z)GX :

(Z ⊥⊥ X)GX
⟹ P(z |do(x)) = P(z)GX :

If you block all confounding paths, seeing = doing. 
(= checking indep. restriction)

You can drop/include actions if there is no causal 
path from manipulated variable to target variable.  
(= checking exclusion restriction)

This is the do-calculus (rule 1 can be derived from these two). Any identifiable 
causal effect can be derived via an application of those simple rules.
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Question: Is it possible to predict the effect of X on Y in a target population 
using data learned from experiments elsewhere, under different conditions?

Our goal: extend our modeling tools to formally characterize when and how.

Answer: sometimes, yes.

Internal validity vs external validity

The previous discussion concerns obtaining a valid estimand for the causal 
effect in the specific population at hand— also known as “internal validity”.

But science is about generalization: studies are usually done with the aim of 
being applicable to new settings. This is usually denoted by “external 
validity” or “generalizability”.



Transportability 
(exp/obs) dist pop A, B, …➞ (exp/obs) dist target pop
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Generalizability, External Validity… ?
•“‘External validity’ asks the question of generalizability: To what populations, 
settings, treatment variables, and measurement variables can this effect be 
generalized?” 
• Shadish, Cook and Campbell (2002)
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Generalizability, External Validity… ?

•“Extrapolation across studies requires ‘some understanding of the reasons 
for the differences.’”  
• Cox (1958)

•“‘External validity’ asks the question of generalizability: To what populations, 
settings, treatment variables, and measurement variables can this effect be 
generalized?” 
• Shadish, Cook and Campbell (2002)

“An experiment is said to have “external validity” if the distribution of 
outcomes realized by a treatment group is the same as the distribution of 
outcome that would be realized in an actual program.”  

Manski (2007)

!14

How can we operationalize this?
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Formalizing transportability

Π = ⟨P, M⟩ : source population Π* = ⟨P*, M*⟩ : target population

Let us start with only two populations (more later):
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Formalizing transportability

3) What do we already know? (Causal Assumptions)

Π = ⟨P, M⟩ : source population Π* = ⟨P*, M*⟩ : target population

Let us start with only two populations (more later):

2) What data do we have? (Data)
P(V ), P(V |do(z)), P*(V )- Obs./Exp. on source; obs. on target:

1) What do we want to know? (Query)
E*[Y |do(x)]- Causal effect on target population:

- Need to encode disparities/commonalities between environments
- Our approach will be nonparametric, requiring only a qualitative 
description of which mechanisms are suspected to be different

!15
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Encoding disparities: selection nodes

P*(y |do(x)) = P(y |do(x), s)

We will extend our causal diagram with “selection nodes” (S) which indicates 
structural discrepancies between populations. 

For instance, if P(y | do(x)) represents the experimental distribution of Y in 
the source domain 𝛱 and P*(y | do(x)) the experimental distribution of Y in 
the target domain 𝛱*, the selection node act as a “switcher”, and accounts for 
any discrepancy between the two populations. That is, by definition,

Thus, symbolically, our task is to remove conditioning on S on any do() 
expression (or counterfactual expression), since we do not have experimental 
data on the target domain. 

Switching between the two populations is represented by conditioning on 
different values of S (or simply conditioning or not conditioning on S).

!16
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The presence of an edge S➝ Z means the local mechanism that assigns 
values to Z may be different, � , between populations. fz ≠ f*z or P(Uz) ≠ P*(Uz)

Thus, graphically, we will check for separation of the source of discrepancy 
(S) from key variables in the terms that describe out target quantity .

Conversely,  absence of an edge S ➝ Y represents the assumption that the 
local mechanism that assigns values to Y is the same in both populations.
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Encoding disparities: selection diagrams

The presence of an edge S➝ Z means the local mechanism that assigns 
values to Z may be different, � , between populations. fz ≠ f*z or P(Uz) ≠ P*(Uz)

Thus, graphically, we will check for separation of the source of discrepancy 
(S) from key variables in the terms that describe out target quantity .

Conversely,  absence of an edge S ➝ Y represents the assumption that the 
local mechanism that assigns values to Y is the same in both populations.

For clarity, selection nodes (S) are represented by square nodes (■).

G : G* : D :

!17
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1) Trivial transportability
- Effect estimable directly from obs. distribution in target (vanilla identification)
2) Direct transportability
- Transportable directly from source to target (Manksi called “external validity”)

E*[Y |do(x), z] = E[Y |do(x), z]

- Reduced to checking d-separation in selection diagram

(Y ⊥⊥ S |C, X)DX
⟹ E*[Y |do(x), c] = E[Y |do(x), c, s] = E[Y |do(x), c]

C = Z C = Z C = { }
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Two lessons

Both Z and W are valid adjustments for the identification of P(y|do(x)). But 
are they equally important for transporting the effect to 𝛱*?  
(hint: use d-sep.)

Lesson 1: differences in propensity to receive treatment do not matter for 
transportability of causal effects. What matters are potential effect-modifiers.

VS

Any selection node d-connected to Y only via X can be ignored.
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Two lessons

Is a randomized control trial really a gold standard?

Lesson 2: unless one wants to confine experimental results to the strict 
conditions of the studied subpopulation, even with a perfect RCT one still 
needs to go through a transportability exercise (ie, causal modeling).

!20

Not transportable!
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E*[Y |do(x)] = E[Y |do(x), s]

= ∑
z

E[Y |do(x), z, s]P(z |do(x), s)

= ∑
z

E[Y |do(x), z]∑
w

P(z |do(x), w, s)P(w |do(x), s)

= ∑
z

E[Y |do(x), z]∑
w

P*(z |w)P(w |do(x))

A more elaborate example:

Finding invariances: beyond direct transportability
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E*[Y |do(x)] = E[Y |do(x), s]

= ∑
z

E[Y |do(x), z, s]P(z |do(x), s)

= ∑
z

E[Y |do(x), z]∑
w

P(z |do(x), w, s)P(w |do(x), s)

= ∑
z

E[Y |do(x), z]∑
w

P*(z |w)P(w |do(x))

A more elaborate example:

Finding invariances: beyond direct transportability

Now let us extend to multiple populations, each with different experimental 
conditions: for instance, in one domain only X was randomized while in  

another domain only Z was randomized… and so on.
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General solution to transportability

We have a complete algorithms that can decide how to combine results of 
several experimental and observational studies, each conducted on a 
different population and under a different set of conditions, so as to 
construct a valid estimate of the effect size for the target population.

You do not need to derive each case by hand.

What does completeness mean?

FUSION DEMO 1

- It  means that if the algorithm can’t find a solution, then it is impossible to 
transport the causal effect of interest without strengthening assumptions.

!24
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2) What data do we have? (Data)

P(V |S = 1), P(V |do(z), S = 1), P(Z)

- Observational/Experimental data in the study sample (S = 1). May or may 
not have census data for some variables Z in the general population.

- Here: nonparametric, qualitative description of the determinants of 
inclusion of units in the study sample.

E[Y |do(x)]
P(y |x)

1) What do we want to know? (Query)
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- Need to describe the selection process.
- Some approaches in early literature invoked strong parametric 
assumptions (Heckman: linear, gaussian);

!27



Cinelli, Bareinboim, SoCal 2019 - Generalizability in Causal Inference

Encoding the selection mechanism
Again we extend our causal diagram with “selection nodes” (S) which now 
indicate selection to the study sample (S = 1), or not (S = 0). Our target of 
inference is a quantity on the population as a whole, not conditioning on S.

!28



Cinelli, Bareinboim, SoCal 2019 - Generalizability in Causal Inference

Encoding the selection mechanism
Again we extend our causal diagram with “selection nodes” (S) which now 
indicate selection to the study sample (S = 1), or not (S = 0). Our target of 
inference is a quantity on the population as a whole, not conditioning on S.

!28



Cinelli, Bareinboim, SoCal 2019 - Generalizability in Causal Inference

Encoding the selection mechanism
Again we extend our causal diagram with “selection nodes” (S) which now 
indicate selection to the study sample (S = 1), or not (S = 0). Our target of 
inference is a quantity on the population as a whole, not conditioning on S.

random sample

!28



Cinelli, Bareinboim, SoCal 2019 - Generalizability in Causal Inference

Encoding the selection mechanism
Again we extend our causal diagram with “selection nodes” (S) which now 
indicate selection to the study sample (S = 1), or not (S = 0). Our target of 
inference is a quantity on the population as a whole, not conditioning on S.

random sample

!28



Cinelli, Bareinboim, SoCal 2019 - Generalizability in Causal Inference

Encoding the selection mechanism
Again we extend our causal diagram with “selection nodes” (S) which now 
indicate selection to the study sample (S = 1), or not (S = 0). Our target of 
inference is a quantity on the population as a whole, not conditioning on S.

random sample selection depends on X

!28



Cinelli, Bareinboim, SoCal 2019 - Generalizability in Causal Inference

Encoding the selection mechanism
Again we extend our causal diagram with “selection nodes” (S) which now 
indicate selection to the study sample (S = 1), or not (S = 0). Our target of 
inference is a quantity on the population as a whole, not conditioning on S.

random sample selection depends on X

!28



Cinelli, Bareinboim, SoCal 2019 - Generalizability in Causal Inference

Encoding the selection mechanism
Again we extend our causal diagram with “selection nodes” (S) which now 
indicate selection to the study sample (S = 1), or not (S = 0). Our target of 
inference is a quantity on the population as a whole, not conditioning on S.

random sample selection depends on X selection depends on X, Y

!28



Cinelli, Bareinboim, SoCal 2019 - Generalizability in Causal Inference

Encoding the selection mechanism
Again we extend our causal diagram with “selection nodes” (S) which now 
indicate selection to the study sample (S = 1), or not (S = 0). Our target of 
inference is a quantity on the population as a whole, not conditioning on S.

Symbolically, our task is to express the query in terms of the available data, 
that is, the distribution under selection bias �  — or more concisely
�  — and the census data we have available (if any).

P(V ∣ S = 1)
P(V ∣ s)

random sample selection depends on X selection depends on X, Y

!28



Cinelli, Bareinboim, SoCal 2019 - Generalizability in Causal Inference

Encoding the selection mechanism
Again we extend our causal diagram with “selection nodes” (S) which now 
indicate selection to the study sample (S = 1), or not (S = 0). Our target of 
inference is a quantity on the population as a whole, not conditioning on S.

Symbolically, our task is to express the query in terms of the available data, 
that is, the distribution under selection bias �  — or more concisely
�  — and the census data we have available (if any).

P(V ∣ S = 1)
P(V ∣ s)

random sample

Graphically, we will check for separation of the selection mechanism S from 
key variables of interest that compose our query.

selection depends on X selection depends on X, Y

!28
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Recovering conditional distributions from selection
Very simple necessary and sufficient condition for conditional distributions.

P(y | x) recoverable P(y | x)  not recoverable P(y | x)  not recoverable

Note this is different from recovering the causal effect P(y | do(x)).

(Y ⊥⊥ S |X)
The conditional distribution P(y | x) is recoverable (without external data) if 
and only if:

For instance, in the third model, P(y|x) is not recoverable, while P(y|do(x)) is, 
as we show next.
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General solution to selection bias

Recovery without external data: we have complete algorithms for 
recovering from selection and confounding biases, both for markovian and 
semi-markovian models.

FUSION DEMO 2

Recovery using external data: still an open question whether the current 
state-of-the-art algorithm is complete.

PS: proof of completeness is recent — Correa, Tian and Bareinboim (2019)

Again, why is completeness important? Completeness assures us, for 
instance, that Heckman’s solution must rely on parametric assumptions.
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Data Fusion
(d1, d2, d3, d4) ➞ (d’1, d’2, d’3, d’4)
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In general: !  (d1, d2, d3, d4) → (d′�
1, d′ �

2, d′�
3, d′�

4)
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Conclusions

Generalizing causal knowledge from heterogenous datasets require 
encoding assumptions about the data generating process.

The structural theory of causation combines graphical models, structural 
equations and potential outcomes to represent and tackle common 
problems of selection bias, transportability, and data fusion more generally.

This has led to necessary and sufficient conditions that fully characterize  
transportability and selection bias (non parameterically), as well as complete 
algorithms for finding those solutions (when they exist).

Software under development: Causal Fusion.

Thank you!
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