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Abstract

We develop an “omitted variable bias” framework for sensitivity analysis of instrumental
variable (IV) estimates that naturally handles multiple “side-effects” (violations of the
exclusion restriction assumption) and “confounders” (violations of the ignorability of
the instrument assumption), exploits expert knowledge to bound sensitivity parameters,
and can be easily implemented with standard software. More specifically, we introduce
sensitivity statistics for routine reporting, such as (extreme) robustness values for IV
estimates, describing the minimum strength that omitted variables need to have to change
the conclusions of an IV study. Next we provide visual displays that fully characterize
the sensitivity of IV point-estimates and confidence intervals to violations of the standard
IV assumptions. Finally, we offer formal bounds on the worst possible bias under the
assumption that the maximum explanatory power of omitted variables are no stronger
than a multiple of the explanatory power of observed variables. Conveniently, we also
show that many pivotal conclusions regarding the sensitivity of the IV estimate (e.g. tests
against the null hypothesis of zero causal effect) can be reached simply through separate
sensitivity analyses of the effect of the instrument on the treatment (the “first stage”)
and the effect of the instrument on the outcome (the “reduced form”). We apply our
methods in a running example that uses instrumental variables to estimate the returns
to schooling.
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1 Introduction

Unobserved confounding often complicates efforts to make causal claims from observational data (e.g.

Pearl, 2009; Imbens and Rubin, 2015a; Rosenbaum, 2017). Instrumental variable (IV) regression

offers a powerful and widely used tool to address unobserved confounding, by exploiting “exogenous”

sources of variation of the treatment (e.g. Wright, 1928; Bowden and Turkington, 1990; Angrist

et al., 1996; Angrist and Pischke, 2009). IV methods have also become a vital tool in the analysis

of randomized experiments with imperfect compliance (Robins, 1989; Balke and Pearl, 1994, 1997;

Angrist et al., 1996). These qualities have made IV methods “a central part of the econometrics canon

since the first half of the twentieth century” (Imbens, 2014, p.324). Beyond economics, instrumental

variables are prominent tools in the arsenal of investigators seeking to make causal claims across the

social sciences, epidemiology, medicine, genetics, and other fields (see e.g. Hernán and Robins, 2006;

Didelez and Sheehan, 2007; Baiocchi et al., 2014; Burgess and Thompson, 2015).

Yet, IV methods carry their own set of demanding assumptions. Principally, conditionally on

certain observed covariates, an instrumental variable must not itself be confounded with the outcome,

and it should influence the outcome only by influencing uptake of the treatment. These assumptions

can be violated by omitted confounders of the instrument-outcome association, and by omitted

“side-effects” of the instrument that influence the outcome via paths not containing the treatment.1

Although in certain cases the IV assumptions may entail testable implications (Pearl, 1995; Bonet,

2001; Swanson et al., 2018; Gunsilius, 2020; Kédagni and Mourifié, 2020), they are often unverifiable

and must be defended by appealing to domain knowledge and theoretical arguments. Whether a

given IV study identifies the causal effect of interest, then, turns on debates as to whether these

assumptions hold.

Particularly in recent years, economists and other scholars have adopted a more skeptical posture

towards IV methods, emphasizing the importance of both defending the credibility of these assump-

tions as well as assessing the consequences of their failures (see e.g., Deaton, 2009; Heckman and

Urzua, 2010). Extensive reviews of many widely-used instrumental variables, such as weather, reli-

gion, sibling structure or ethnolinguistic fractionalization, have cataloged several plausible violations

of the exclusion restriction for such instruments (Gallen, 2020; Mellon, 2020). More worrisome, if

the IV assumptions fail to hold, it is well known that the bias of the IV estimate may be worse than

the original confounding bias of the simple regression estimate that the IV was supposed to address

(Bound et al., 1995). Therefore, researchers are also advised to perform sensitivity analyses to assess

the degree of violation of the IV assumptions that would be required to alter the conclusions of an

IV study. While a number of sensitivity analyses for IV have been proposed (DiPrete and Gangl,

2004; Altonji et al., 2005; Small, 2007; Small and Rosenbaum, 2008; Conley et al., 2012; Wang et al.,

1In the recent IV literature, the first assumption is usually called exogeneity, ignorability, unconfoundedness or
independence of the instrument, whereas the second assumption is called the exclusion restriction (Angrist and Pischke,
2009; Pearl, 2009; Imbens and Rubin, 2015a; Swanson et al., 2018). In earlier econometric works, these two assumptions
were often combined into one, also labeled the “exclusion restriction” (Imbens, 2014).



2018; Jiang et al., 2018; Cinelli et al., 2019), such sensitivity analyses still remain rare in practice.2

We suggest several reasons for this slow uptake. First, the traditional approach for the sensitiv-

ity of IV has focused on parameterizing violations of the IV assumptions with a single parameter

summarizing the “bias” in the association of the instrument with the outcome. While this parame-

terization may be well-suited when the bias is only due to the direct effect of the instrument on the

outcome (not through the treatment), this parameterization is not as straightforward to use when

reasoning about multiple side-effects or confounders of the instrument, in which case that sensitivity

parameter is a complicated composite of many source of bias (see Appendix E for a comparison of our

proposal with the traditional approach to the sensitivity of IV). Second, while users of IV methods

are instructed to routinely report quantities to diagnose certain inferential problems such as “weak

instruments” (eg, Stock and Yogo, 2002) we lack sensitivity statistics that can quickly communicate

how robust an IV study is to violations in the form of omitted confounders or side-effects of the

instrument. Finally, it is often difficult to connect the formal results of a sensitivity analysis to a

cogent argument about what types of biases can be effectively ruled out by expert knowledge.

In this paper, we develop an omitted variable bias (OVB) framework for assessing the sensitivity

of IV estimates that aims to address these challenges and improve the usability and uptake of

sensitivity analysis for IV.3 Building on recent developments of OVB for ordinary least squares (OLS)

(Cinelli and Hazlett, 2020), we develop a suite of sensitivity analysis tools for IV that: (i) has correct

test size (or confidence interval coverage) regardless of instrument strength; (ii) naturally handles

violations due to multiple “side-effects” and “confounders,” possibly acting non-linearly; (iii) is well

suited for routine reporting; (iv) exploits expert knowledge to bound sensitivity parameters; and,

(v) can be easily implemented with standard software.

More specifically, we introduce two main sensitivity statistics for IV estimates: (i) the robustness

value (RV) describes the minimum strength of association (in terms of partial R2) that omitted

variables (side-effects or confounders) need to have, both with the instrument and with the untreated

potential outcome, such that they are capable of changing the conclusions of the study; and (ii) the

extreme robustness value, which describes the minimal strength of association that omitted variables

need to have with the instrument alone (regardless of their association with the untreated potential

outcome) in order to be problematic. The routine reporting of these quantities provide a quick and

2For instance, in economics, only 1 out of 27 papers using instrumental variables published in the American Eco-
nomic Review in 2020 performed formal sensitivity analysis. In political science, this number was 1 out of 12 papers,
considering the top three general interest journals (American Political Science Review, American Journal of Political
Science, and Journal of Politics) for 2019.

3We focus on the “just-identified” case with one treatment and one instrument. One reason for this is that a
thorough consideration of the identification assumptions and how they may be violated is already complicated enough
with a single instrument (Angrist and Pischke, 2009). Second, and relatedly, in most applied settings, the single-
instrument and single-treatment setup is the most common. For example, in a broad review of papers in the American
Economic Review and 15 other journals of the American Economic Association, Young (2022) finds that 80% of IV
regressions were of this type. Finally, in many “multiple instrument” studies, it is not uncommon for researchers to
also report and give special focus to the analysis of their “best” instrument (Angrist and Pischke, 2009), or to combine
multiple instruments into a single instrument, for example, constructing an allele score in Mendelian Randomization
(Burgess and Thompson, 2015; Cinelli et al., 2022). Extension of the tools we develop here to the scenario with multiple
instruments and treatments is object of future investigations.
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simple way to improve the transparency and facilitate the assessment of the credibility of IV studies.

Next, we offer intuitive graphical tools for investigators to assess how postulated confounding of any

degree would alter the IV hypothesis tests, as well as lower or upper limits of confidence intervals.

Finally, these tools can be supplemented with formal bounds on the worst possible bias that side-

effects or confounders could cause, under the assumption that the maximum explanatory power of

these omitted variables are no stronger than a chosen multiple of the explanatory power of one or

more observed variables.

Conveniently, considering that investigators are already well advised to carefully examine their

“first stage” (the effect of the instrument on the treatment) and “reduced form” (the effect of the

instrument on the outcome) (e.g. Angrist and Krueger, 2001; Angrist and Pischke, 2009) our analysis

shows that indeed many pivotal conclusions regarding the sensitivity of the IV estimate can in fact be

reached simply through separate sensitivity analyses of these two familiar auxiliary OLS estimates4.

First, if researchers are interested in the null hypothesis of zero effect, all recent OVB tools for OLS

(Cinelli and Hazlett, 2020; Cinelli et al., 2020) can simply be directly applied to the reduced-form

regression, and confounders or side-effects shown to be problematic there are equally problematic for

IV. Second, if interest lies in assessing not just the null of zero, but biases that bring the estimate

partway to zero or beyond it, then the robustness of the IV estimate formally reduces to the minimum

of the robustness of the reduced-form and the robustness of the first-stage regressions.

A final contribution of this paper is that, while developing OVB tools for IV, we extended the

OVB results of Cinelli and Hazlett (2020) providing a new way to perform sensitivity analysis that

simply replaces a conventional critical value (e.g. 1.96) with a novel “bias-adjusted” critical value

that accounts for a postulated degree of omitted variable bias. Notably, this correction on the critical

value does not depend on the data, and can be computed by simply postulating a hypothetical partial

R2 of the omitted variables with the dependent and independent variables of the OLS regression.

Researchers, readers, and reviewers can thus quickly and easily perform sensitivity analysis by simply

substituting traditional thresholds with bias-adjusted thresholds, when testing a particular null

hypothesis, or when constructing confidence intervals. We believe the extreme simplicity of this

approach will further aid in the widespread adoption of sensitivity analysis in applied work.

In what follows, Section 2 introduces the running example and provides the essential background

on the main IV estimators, all of which depend upon OLS. Next, Section 3 extends the OVB

framework of Cinelli and Hazlett (2020), which not only improves the sensitivity tools for OLS, but

greatly simplifies the analysis for the IV setting. Section 4 then develops an OVB framework for

IV, first showing what can be gleaned from the first-stage and reduced-form regressions alone, then

establishing the necessary OVB-type results for a complete sensitivity analysis of the IV estimate.

Section 5 returns to our running example to show how these results can can be deployed in practice.

Finally, we offer concluding remarks in Section 6. Open-source software for R, Python and Stata

4In the context of randomization inference, similar observations can be found in Rosenbaum (1996, 2002); Imbens
and Rosenbaum (2005); Small and Rosenbaum (2008); Keele et al. (2017) and Rosenbaum (2017).
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implements the methods discussed in this paper.5

2 Running example

We begin by introducing the running example and briefly reviewing the required background on

instrumental variables.

Ordinary least squares and the OVB problem

Many observational studies have established a positive and large association between educational

achievement and earnings using regression analysis (Card, 1999). Here we consider the work of Card

(1993), which employed a sample of n = 3, 010 individuals from the National Longitudinal Survey

of Young Men (NLSYM). Considering the following multiple linear regression

Y = τ̂OLS,resD + Xβ̂OLS,res + ε̂OLS,res (1)

where Y denotes Earnings and measures the log transformed hourly wages of the individual6, D

denotes Education and consists of an integer-valued variable indicating the completed years of edu-

cation of the individual, and the matrix X comprises race, experience, and a set of regional factors,

Card concluded that each additional year of schooling was associated with approximately 7.5% higher

wages (i.e, τ̂OLS,res ≈ 0.075; see Table 5 in Appendix F.).

Educational achievement, however, is not randomly assigned; perhaps individuals who obtain

more education have higher wages due to other reasons, such as coming from wealthier families, or

having higher levels of some unobserved characteristic, such as “ability” or “motivation.” If data on

these variables were available, then further adjustment for such variables would be able to capture

the causal effect of educational attainment on schooling, as in

Y = τ̂OLSD + Xβ̂OLS + U γ̂OLS + ε̂OLS (2)

where U denotes a set of variables that, along with X, is sufficient to eliminate confounding con-

cerns7. Such detailed information on individuals, however, is not available, and researchers will not

even agree upon which variables U are needed. In the absence of such variables, regression estimates

that adjust for only a partial list of characteristics (such as X) may suffer from “omitted variable

5Sensitivity analysis of the reduced form, first stage, and Anderson-Rubin regression for a specific null hypothesis
can already be performed using the R, Python and Stata package sensemakr (Cinelli et al., 2020; LaPierre et al., 2021).
Additional functionality, such as contour plots with lower and upper limits of the Anderson-Rubin confidence interval,
is forthcoming.

6In this case, regression coefficients can be conveniently interpreted, approximately, as percent changes in earnings.
7I.e, the set {X,U} is sufficient to render the treatment assignment ignorable. Equivalently, in graphical terms,

the set would satisfy the backdoor (or, more generally, the adjustment) criterion (see Pearl, 2009; Angrist and Pischke,
2009; Imbens and Rubin, 2015b; Shpitser et al., 2012; Perkovic et al., 2018; Cinelli et al., 2021). Beyond ignorability,
if the treatment effect is heterogeneous, this may affect the causal interpretation of the regression coefficient τ̂OLS (see,
e.g, Angrist and Pischke, 2009).
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bias” (Angrist and Pischke, 2009; Cinelli and Hazlett, 2020) and are likely to overestimate the “true”

returns to schooling.

Instrumental variables as a solution to the OVB problem

Instrumental variable methods offer an alternative route to estimate the causal effect of schooling

on earnings without having data on the unobserved variables U . The key for such methods to work

is to find a new variable (the “instrument”) that changes the incentives to educational achievement,

but is associated with earnings only through its effect on education.

To that end, Card (1993) proposed exploiting the role of geographic differences in college accessi-

bility. In particular, consider the variable Proximity, encoding an indicator of whether the individual

grew up in an area with a nearby accredited 4-year college, which we denote by Z. Students who

grow up far from the nearest college may face higher educational costs, discouraging them from

pursuing higher level studies. Next, and most importantly, Card (1993) argues that, conditional on

the set of observed variables X (available on the NLSYM), whether one lives near a college is not

itself confounded with earnings, nor does proximity to college affect earnings apart from its effect

on years of education. If we believe such assumptions hold it is possible to recover a valid estimate

of the (weigthed average of local) average treatment effect(s) of Education on Earnings by simply

taking the ratio of two OLS coefficients, one measuring the effect of Proximity on Earnings, and

another measuring the effect of Proximity on Education.8

More precisely, we estimate two OLS models

First Stage: Y = θ̂resZ + Xψ̂res + ε̂d,res (3)

Reduced Form: Y = λ̂resZ + Xβ̂res + ε̂y,res (4)

Throughout the paper we refer to these equations as the “first stage” (Equation 3) and the “reduced

form” (Equation 4), as these are now common usage (Angrist and Pischke, 2009, 2014; Imbens and

Rubin, 2015a; Andrews et al., 2019).9 The coefficient for Proximity (Z) on the first-stage regression,

θ̂res ≈ 0.32, reveals that those who grew up near a college indeed have higher educational attainment,

having completed an additional 0.32 years of education, on average. Likewise, the coefficient for

Proximity (Z) on the reduced-form regression, λ̂res ≈ 0.042, suggests that those who grew up near

8This identification result requires further functional restrictions on the data-generating process, such as linearity
or monotonicity. Conditions that allow a causal interpretation of the “traditional” IV estimand (also known as the
“2SLS estimand”) are extensively discussed elsewhere and will not be reviewed here, see Angrist et al. (1996); Angrist
and Pischke (2009); Imbens (2014); Swanson et al. (2018); S loczyński (2020) and Blandhol et al. (2022). In particular,
Blandhol et al. (2022) provides necessary and sufficient conditions for a “weakly causal” interpretation of the traditional
IV estimand. Here we assume the researcher has already performed the required identification analysis, and decided
that she is interested in the results of Equations 7, 8 and 9, controlling both for observed covariates X and unobserved
covariates W . We note the bulk of current applied work using instrumental variables takes this form, and non-
parametric estimation is still rare in practice (Blandhol et al., 2022, p.11). It is nevertheless possible to extend these
tools to nonparametric settings leveraging recent results in Chernozhukov et al. (2022). We leave this to future work.

9Though now well established, these labels abuse the original meaning of the terminology, since both regressions
are in their “reduced form.” Equation 3 is called the “first stage” due to its operational role on two-stage least squares
estimation (see Appendix A). See also Imbens (2014) and Andrews et al. (2019).
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a college have 4.2% higher earnings. The IV estimate is then given by the ratio

τ̂res :=
λ̂res

θ̂res
≈ 0.042

0.319
≈ 0.132 (5)

The value of τ̂res ≈ 0.132 suggests that, contrary to the OLS estimate of 7.5%, and perhaps surpris-

ingly, each additional year of schooling instead raises wages by much more—13.2%.

The ratio of Equation 5 is sometimes called the indirect least squares (ILS) estimator, the “ratio

of coefficients” estimator, or, in the case of a binary instrument, the “Wald estimator” (Wald, 1940).

Inference in the ILS framework is usually performed using the delta-method. A closely related

approach for instrumental variable estimation is denoted by “two-stage least squares” (2SLS), in

which one saves the predictions of the first-stage regression, and then regress the outcome on these

fitted values. By the Frisch-Waugh-Lovell (FWL) theorem (Frisch and Waugh, 1933; Lovell, 1963,

2008) one can readily show that 2SLS and ILS are numerically identical (see Appendix A).

Anderson-Rubin regression and Fieller’s theorem. The methods of ILS and 2SLS may prove

unreliable when the first-stage coefficient is “close” to zero, relative to the sampling variability of

its estimator. This is known as the “weak instrument” problem. Two alternative procedures that

allow constructing confidence intervals with correct coverage, regardless of the “strength” of the first

stage, are the proposals of Anderson and Rubin (1949) and Fieller (1954).10

The Anderson-Rubin approach (Anderson and Rubin, 1949) starts by creating the random vari-

able Yτ0 := Y − τ0D in which we subtract from Y a “putative” causal effect of D, namely, τ0. If Z is

a valid instrument, under the null hypothesis H0 : τ = τ0, we should not see an association between

Yτ0 and Z, conditional on X. In other words, if we run the OLS model

Anderson-Rubin: Yτ0 = φ̂τ0,resZ + Xβ̂τ0,res + ε̂τ0,res (6)

we should find that φ̂τ0,res is equal to zero, but for sampling variation. To test the null hypothe-

sis H0 : φτ0,res = 0 in the Anderson-Rubin regression is thus equivalent to test the null hypothesis

H0 : τ = τ0. The 1 − α confidence interval is constructed by collecting all values τ0 such that the

null hypothesis H0 : φτ0,res = 0 is not rejected at the chosen significance level α. This approach is

numerically identical to Fieller’s theorem (Fieller, 1954). Finally, it is convenient to define the point

estimate τ̂AR,res as the value τ0 which makes φ̂τ0,res exactly equal to zero. By the FWL theorem, we

can easily show that this point estimate is numerically identical to that of 2SLS and ILS. Details

and derivations of these algebraic identities (and differences) are provided in Appendix A.

10See Andrews et al. (2019) for an extensive review of inference with weak instruments. An intuitive visual comparison
between the delta-method and Fieller’s approach is given by Hirschberg and Lye (2010, 2017).
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The IV estimate itself may suffer from OVB

The previous IV estimate relies on the assumption that, conditional on X, Proximity and Earnings

are unconfounded, and the effect of Proximity on Earnings must go entirely through Education. As it

is often the case, neither assumption is easy to defend in this setting. First, some of the same factors

that might confound the relationship between Education and Earnings could similarly confound the

relationship of Proximity and Earnings (e.g. family wealth or connections). Second, as argued in

Card (1993), the presence of a college nearby may be associated with high school quality, which in

its turn also affects earnings. Finally, other geographic confounders can make some localities likely

to both have colleges nearby and lead to higher earnings. These are only coarsely conditioned on by

the observed regional indicators, and residual biases may still remain.

In sum, instead of adjusting only for X as in the previous first-stage and reduced-form regressions,

we should have adjusted for both the observed covariates X and unobserved covariates W as in

First Stage: Y = θ̂Z + Xψ̂ + W δ̂ + ε̂d (7)

Reduced Form: Y = λ̂Z + Xβ̂ + W γ̂ + ε̂y (8)

Or, in the Anderson-Rubin approach, we should have run instead

Anderson Rubin: Yτ0 = φ̂τ0Z + Xβ̂τ0 + W γ̂τ0 + ε̂τ0 (9)

Where W stands for all unobserved factors necessary to make Proximity a valid instrument for the

effect of Education on Earnings (e.g, Family Wealth, High School Quality, Place of Residence)11.

Our task is thus to characterize how the IV point estimates and confidence intervals would have

changed due to the inclusion of omitted variables W . Since, at their core, IV approaches rely on

OLS estimation, we should then be able to leverage all recent developments of OVB tools for OLS

(Cinelli and Hazlett, 2020) for examining the sensitivity of IV.

3 Omitted variable bias with the partial R2 parameterization

In this section, we extend the results of Cinelli and Hazlett (2020) regarding the partial R2 parame-

terization of the OVB formula for OLS. In particular, we introduce bias-adjusted critical values for

OLS, and show how sensitivity analysis can be performed by simply substituting traditional critical

values with the adjusted ones. Notably, this adjustment does not depend on the data, and it consists

of a simple correction on the critical value based solely on the hypothetical strength of omitted vari-

ables (and degrees of freedom). Next we introduce new sensitivity statistics for routine reporting,

such as extreme robustness values, characterizing the bare minimum strength that omitted variables

11See causal diagrams in Figure 4 of Appendix F for “canonical” models illustrating the traditional assumptions
of IV and their violations. Equivalent assumptions can be articulated in the potential outcomes framework (Angrist
et al., 1996; Pearl, 2009; Swanson et al., 2018). Here, we assume the researcher has already established that Z is a
valid IV for the causal effect of D on Y conditional on the set {X,W }.
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must have to overturn certain conclusions. We formalize such statistics as an answer to an inverse

question regarding a set of compatible inferences given bounds on the strength of omitted variables.

Finally, we derive a novel bound on the strength of omitted variables on the basis of comparison

with observed variables. These results are not only useful on their own, but they greatly simplify

the development of a suite sensitivity analysis tools for IV in Section 4.

3.1 Sensitivity in an omitted variable bias framework

For concreteness, suppose we are interested in the coefficient λ̂ of the regression equation of the

outcome Y on the instrument Z, adjusting for a set of observed covariates X and a single unobserved

covariate W (we generalize to multivariate W below),

Y = λ̂Z + Xβ̂ + γ̂W + ε̂y (10)

where Y , Z and W are (n × 1) vectors, X is an (n × p) matrix, with n observations (including a

constant), λ̂, β̂ and γ̂ are the OLS estimates of the regression of Y on Z, X and W , and ε̂y the

corresponding residuals.

However, when W is unobserved the investigator is instead forced to estimate the restricted

model,

Y = λ̂resZ + Xβ̂res + ε̂y,res (11)

where λ̂res and β̂res are the coefficients of the restricted OLS adjusting for Z and X alone, and ε̂y,res

its corresponding residual. The OVB framework seeks to answer the following question: how do the

inferences for λres from the restricted OLS model (omitting W ), compare with the inferences for our

actual target parameter λ from the full OLS model (adjusting for W )?

Adjusted estimates and standard errors

Let R2
Y∼W |Z,X denote the partial R2 of W with Y , after controlling for Z and X, and let R2

Z∼W |X
denote the partial R2 of W with Z after adjusting for X. Given the point estimate and (estimated)

standard error of the restricted model actually run, λ̂res and ŝe(λ̂res), the values R2
Y∼W |Z,X and

R2
Z∼W |X are sufficient to recover λ̂ and ŝe(λ̂) (Cinelli and Hazlett, 2020). More precisely, define

b̂ias(λ) := λ̂res − λ̂ as the difference between the restricted estimate and the full estimate. Then,

|b̂ias(λ)| =

√√√√R2
Y∼W |Z,XR

2
Z∼W |X

1−R2
Z∼W |X

df × ŝe(λ̂res) = BF
√

df × ŝe(λ̂res) (12)

8



Where here df = n − p − 1 stands for the residual degrees of freedom from the restricted model

actually run. For notational convenience, and to aid interpretation, we define the term

BF :=

√√√√R2
Y∼W |Z,XR

2
Z∼W |X

1−R2
Z∼W |X

(13)

as the “bias factor” of W , which is the part of the bias solely determined by R2
Y∼W |Z,X and R2

Z∼W |X .

Likewise, the standard error of the full model can be recovered with

ŝe(λ̂) =

√√√√1−R2
Y∼W |Z,X

1−R2
Z∼W |X

(
df

df −1

)
× ŝe(λ̂res) = SEF

√
df /(df −1)× ŝe(λ̂res) (14)

where again, for convenience, we define

SEF :=

√√√√1−R2
Y∼W |Z,X

1−R2
Z∼W |X

(15)

as the “standard error factor” of W , summarizing the factor of the standard error which is solely

determined by the sensitivity parameters R2
Y∼W |Z,X and R2

Z∼W |X . Note that SEF consists of the

square-root of the product of the familiar “variance inflation factor,” 1/
(

1−R2
Z∼W |X

)
and what

could be labeled the “variance reduction factor,” 1 − R2
Y∼W |Z,X . Cinelli and Hazlett (2020, Sec.

4.2) provide further discussion. Although simple, Equations 12 and 14 form the basis of sensi-

tivity analyses for point estimates, standard errors and t-values in terms of sensitivity parameters

R2
Y∼W |Z,X and R2

Z∼W |X .

Multiple unobserved variables. For simplicity of exposition, throughout the text we usually

refer to a single omitted variable W . These results, however, can be used for performing sensitivity

analyses considering multiple omitted variables W = [W1,W2, . . . ,Wn], and thus also non-linearities

and functional form misspecification of observed variables. In such cases, barring an adjustment in

the degrees of freedom, the equations are conservative, and reveal the maximum bias a multivariate

W with such pair of partial R2 values could cause (Cinelli and Hazlett, 2020, Sec. 4.5).

3.2 Bias-adjusted critical values and set of compatible inferences

We now introduce a novel correction researchers can make to traditional critical values in order to

account for omitted variable bias. That is, traditional confidence intervals account for sampling

uncertainty, and are constructed by multiplying the standard error of the coefficient by a critical

value (for example, in large enough samples, 1.96 for a 95% confidence level). We show that replacing

this traditional critical value with a bias-adjusted critical value, which we introduce here, accounts

for both sampling uncertainty and systematic biases due to omitted variables with a given postulated

9



strength. Although simple, this perspective will prove useful for OLS in general, but especially for

instrumental variables, where we apply it to the test inversion employed in the Anderson-Rubin

approach (Section 4).

Specifically, let t∗α,df −1 denote the critical value for a standard t-test with significance level α and

df −1 degrees of freedom. Now let LL1−α(λ) be the lower limit and UL1−α(λ) be the upper limit of

a 1− α confidence interval for λ in the full model, i.e.,

LL1−α(λ) := λ̂− t∗α,df −1 × ŝe(λ̂), UL1−α(λ) := λ̂+ t∗α,df −1 × ŝe(λ̂), (16)

Considering the direction of the bias that further reduces the lower limit, as well as the direction that

further increases the upper limit, Equations 12 and 14 imply that both quantities can be written as

a function of the restricted estimates and a new multiplier (see Appendix B)

LL1−α(λ) = λ̂res − t†α,df −1,R2 × ŝe(λ̂res), UL1−α(λ) = λ̂res + t†
α,df −1,R2 × ŝe(λ̂res) (17)

where t†
α,df −1,R2 is the bias-adjusted critical value

t†
α,df −1,R2 := SEF

√
df /(df −1)× t∗α,df −1 + BF

√
df. (18)

As the subscript R2 = {R2
Y∼W |Z,X , R

2
Z∼W |X} conveys, t†

α,df −1,R2 depends on both sensitivity pa-

rameters. Notably, this correction does not depend on the data (but for the degrees of freedom).

The adjusted critical value t†
α,df −1,R2 uniquely determines the extreme points of the confidence in-

terval for λ after adjusting for an omitted variable W with a given pair of partial R2. Further, to

test the more general null hypothesis of a change of (100 × q∗)% of the current estimate λ̂res at

the α level, it suffices to rescale the original t-value by q∗ and compare this to the adjusted critical

threshold t†
α,df −1,R2 . This allows researchers, readers, and reviewers to quickly assess the robustness

of reported findings to omitted variables of any postulated strength.

For a numerical example, it is instructive to consider the case in which the omitted variable W

has equal strength with Y and Z, i.e, R2
Y∼W |Z,X = R2

Z∼W |X = R2. We then have that SEF = 1 and

BF = R2/
√

1−R2 resulting in a very simple correction formula,

t†
α,df −1,R2,R2 ≈ t∗α,df −1 +

R2

√
1−R2

√
df, (19)

where here we also approximate
√

df/(df− 1) ≈ 1. Table 1 shows the adjusted critical values (at

the 5% significance level) for this case, considering different strengths of the omitted variable W ,

ranging from R2 = 0 to R2 = .1, and various sample sizes, ranging from df = 100 to df = 1, 000, 000.

The first row of Table 1 starts with the ideal case of zero residual biases. Here the traditional

critical threshold is approximately 1.96 (1.98 when df = 100) regardless of sample size. Moving to

the second row forward, we now perform the omitted variable bias correction of Equation 19. Tests

using these new critical values thus account both for sampling uncertainty and residual biases with
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the postulated strength, as given by R2
Y∼W |Z,X = R2

Z∼W |X = R2. Note how t†
α,df −1,R2 increases

the larger the sample size. For example, consider the second row, with an adjusted critical value

that is robust to omitted variables that explain 1% of the residual variation of both Z and Y , i.e,

R2
Y∼W |Z,X = R2

Z∼W |X = .01. When df = 100, this leads to an adjusted critical value of ≈ 2.1,

whereas if df = 1, 000, 000, this leads to the much higher threshold of ≈ 12.

R2 Degrees of Freedom (sample size)
100 1,000 10,000 100,000 1,000,000

0.00 1.98 1.96 1.96 1.96 1.96
0.01 2.08 2.28 2.97 5.14 12.01
0.02 2.19 2.60 3.98 8.35 22.16
0.03 2.29 2.92 5.01 11.59 32.42
0.04 2.39 3.25 6.04 14.87 42.78
0.05 2.50 3.58 7.09 18.18 53.26
0.06 2.60 3.92 8.15 21.53 63.85
0.07 2.71 4.26 9.22 24.91 74.55
0.08 2.82 4.60 10.30 28.34 85.37
0.09 2.93 4.94 11.39 31.79 96.31
0.10 3.04 5.29 12.50 35.29 107.37

Table 1: Bias-adjusted critical values, t†
α,df −1,R2,R2 , for different strengths of the omitted variable

W (with R2
Y∼W |Z,X = R2

Z∼W |X = R2) and various sample sizes. Significance level α = 5%.

This behaviour is simply a consequence of the well-known, but often ovelooked fact that larger

samples will eventually detect any signal, even if such signal is spurious. Thus, as the sample size

grows, a higher threshold is needed in order to protect inferences against systematic biases.

Compatible inferences given bounds on partial R2

Given hypothetical values for R2
Y∼W |Z,X and R2

Z∼W |X , the previous results allow us to determine

the exact changes in inference regarding a parameter of interest due to the inclusion of W with

such strength. Often, however, the analyst does not know the exact strength of omitted variables,

and wishes to investigate the worst possible inferences that could be induced by a W with bounded

strength, for instance, R2
Y∼W |Z,X ≤ R2max

Y∼W |Z,X and R2
Z∼W |X ≤ R2max

Z∼W |X . That is, we wish to find

the maximum adjusted critical value due to an omitted variable W with at most such strength.

Writing t†
α,df −1,R2 as a function of the sensitivity parameters R2

Y∼W |Z,X and R2
Z∼W |X , we solve the

maximization problem (see appendix)

max
R2
Y∼W |Z,X ,R2

Z∼W |X

t†
α,df −1,R2 s.t. R2

Y∼W |Z,X ≤ R
2max
Y∼W |Z,X , R2

Z∼W |X ≤ R
2max
Z∼W |X (20)

Note that, although this maximum is often reached at the extrema of both coordinates, this is not

always the case. Due to the variance reduction factor, increasing R2
Y∼W |Z,X may reduce the stan-

dard error more than enough to compensate for the increase in bias, resulting in tighter confidence
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intervals. Denoting the solution to the optimization problem in expression (20) as t†max
α,df −1,R2 , the

most extreme possible lower and upper limits after adjusting for W are given by

LLmax
1−α,R2(λ) = λ̂res − t†max

α,df −1,R2 × ŝe(λ̂res), ULmax
1−α,R2 = λ̂res + t†max

α,df −1,R2 × ŝe(λ̂res) (21)

The interval composed of such limits,

CImax
1−α,R2(λ) =

[
LLmax

1−α,R2(λ), ULmax
1−α,R2(λ)

]
(22)

retrieves all inferences for λ which are compatible with an omitted variable with such strengths. In

other words, CImax
1−α,R2(λ) is the union of all confidence intervals that could have been obtained by

including an omitted variable with that strength or less in the regression equation. Moreover, if the

true (sample) partial R2 of W lies within the posited bounds, and the confidence interval adjusting

for W has nominal coverage, it then immediately follows that CImax
1−α,R2(λ) is also a confidence interval

with at least 1− α coverage.12

3.3 Sensitivity statistics for routine reporting

Widespread adoption of sensitivity analysis benefits from simple and interpretable statistics that

quickly convey the overall robustness of an estimate. To that end, Cinelli and Hazlett (2020) proposed

two sensitivity statistics for routine reporting: (i) the partial R2 of Z with Y , R2
Y∼Z|X ; and, (ii) the

robustness value (RV). Here we generalize the notion of a partial R2 as a measure of robustness

to extreme scenarios, by introducing the extreme robustness value (XRV), for which the partial R2

is a special case. We also recast these sensitivity statistics as a solution to an “inverse” question

regarding the set of compatible inferences, CImax
1−α,R2(λ). That is, given a threshold for λ deemed to

be of scientific importance (say, zero), what is the minimum strength of the sensitivity parameters

R2 that could lead CImax
1−α,R2(λ) to include that threshold? This framework facilitates extending

these metrics to other contexts, in particular to the IV setting, as we show in Section 4.2.3.

3.3.1 The extreme robustness value

One benefit of the partialR2 parameterization is that the parameterR2
Y∼W |Z,X can be left completely

unconstrained; i.e, in the optimization problem of expression 20, one can set the bound for R2
Y∼W |Z,X

to its trivial bound of 1, and this still results in non-trivial bounds on the set of compatible inferences.

This leads to our first inverse question: what is the bare minimum strength of association of the

omitted variable W with Z that could bring its estimated coefficient to a region where it is no longer

statistically different than zero (or another threshold of interest)?

12Note that here we are considering sample estimates, and thus this is different from the traditional analysis of
confidence intervals for partially identified quantities, as in Imbens and Manski (2004) and Chernozhukov et al. (2022).
That is, here we have an exact algebraic result that recovers the union of all confidence intervals that could have been
obtained had we adjusted for an omitted variable W with (sample) R2s bounded by the postulated strength. If the
bias analysis is made in terms of population quantities (instead of sample quantities), valid (asymptotic) confidence
intervals for the partially identified λ can be constructed as in Chernozhukov et al. (2022, Theorem 4).
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To answer this question, we can see CImax
1−α,R2(λ) as a function of the bound R2max

Z∼W |X alone,

obtained from maximizing the adjusted critical value in expression 20 where: (i) the parameter

R2
Y∼W |Z,X is left completely unconstrained (i.e, R2

Y∼W |Z,X ≤ 1); and, (ii) the parameter R2
Z∼W |X

is bounded by XRV (i.e, R2max
Z∼W |X ≤ XRV). The Extreme Robustness Value XRVq∗,α(λ) is defined

as the greatest lower bound XRV such that the null hypothesis that a change of (100× q∗)% of the

original estimate, H0 : λ = (1− q∗)λ̂res, is not rejected at the α level,

XRVq∗,α(λ) := inf
{

XRV; (1− q∗)λ̂res ∈ CImax
1−α,1,XRV(λ)

}
(23)

The solution to this problem gives,

XRVq∗,α(λ) =


0, if fq∗(λ) ≤ f∗α,df−1
f2q∗(λ)− f∗2α,df−1

1 + f2q∗(λ)
, otherwise.

(24)

Where fq∗(λ) := q∗|fY∼Z|X | (here fY∼Z|X stands for the partial Cohen’s f and we define the critical

threshold f∗α,df −1 := t∗α,df −1/
√

df −1).13 Note XRVq∗,α(λ) can be interpreted as an “adjusted partial

R2” of Z with Y . To see why, let us first consider the case of the minimal strength to bring the point

estimate (α = 1) to exactly zero (q∗ = 1). We then have that f∗α=1,df −1 = 0 and f2q∗=1(λ) = f2Y∼Z|X ,

resulting in

XRVq∗=1,α=1(λ) =
f2Y∼Z|X

1 + f2Y∼Z|X
= R2

Y∼Z|X (25)

This recovers the result of Cinelli and Hazlett (2020), and shows that, for an omitted variable W to

bring down the estimated coefficient to zero, it needs to explain at least as much residual variation

of Z as Z explains of Y . For the general case, we simply perform two adjustments that dampens

the “raw” partial R2 of Z with Y . First we adjust it by the proportion of reduction deemed to

be problematic q∗ through fq∗ = q∗|fY∼Z|X |; next, we subtract the threshold for which statistical

significance is lost at the α level (via f∗2α,df−1).

The extreme robustness value establishes thus the equivalent of a “Cornfield condition” (Cornfield

et al., 1959) for OLS estimates, meaning it gives the bare minimum strength of omitted variables

necessary to overturn a certain conclusion—if W cannot explain at least XRVq∗,α(λ) of the residual

variation of Z, then such variable is not strong enough to bring about a change of (100 × q∗)% on

the original estimate, at the significance level of α, regardless of its association with Y .

3.3.2 The robustness value

Placing no constraints on the association of the omitted variable W with Y may be too conservative

an exercise. An alternative measure of robustness of the OLS estimate is to consider the minimal

13Cohen’s f2 can be written as f2 = R2/(1−R2).
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strength of association that the omitted variable needs to have, both with Z and Y , so that a 1− α
confidence interval for λ will include a change of (100× q∗)% of the current restricted estimate.

Write CImax
1−α,R2(λ) as a function of both bounds varying simultaneously, that is, construct

CImax
1−α,RV,RV(λ) by maximizing the adjusted critical value with bounds given by R2

Y∼W |Z,X ≤ RV

and R2
Z∼W |X ≤ RV. The Robustness Value RVq∗,α(λ) for not rejecting the null hypothesis that

H0 : λ = (1− q∗)λ̂res, at the significance level α, is defined as

RVq∗,α(λ) := inf
{

RV; (1− q∗)λ̂res ∈ CImax
1−α,RV,RV(λ)

}
(26)

We then have that,

RVq∗,α(λ) =


0, if fq∗(λ) ≤ f∗α,df−1
1

2

(√
f4q∗,α(λ) + 4f2q∗,α(λ)− f2q∗,α(λ)

)
, if f∗α,df−1 < fq∗(λ) < f∗−1α,df−1

XRVq∗,α(λ), otherwise.

(27)

Where fq∗,α(λ) := q∗|fY∼Z|X |− f∗α,df −1. In the appendix we show the conditions of Equation 27 are

equivalent to those first derived in Cinelli and Hazlett (2020), with the advantage of being simpler

to verify. The first case occurs when the confidence interval already includes (1− q∗)λ̂res or the mere

change of one degree of freedom achieves this. The second case occurs when both associations of W

reach the bound. Finally, in the last case the solution is an interior point—this happens when the

bound is large enough such that the constraint on the association with the outcome is not binding;

in this case the RV reduces to the XRV.

The robustness value offers a simple interpretable measure that summarizes the strength of

omitted variables necessary to change the estimate in problematic ways. If W explains RVq∗,α(λ)

of the residual variance of both Z and Y , then such variable is sufficiently strong to bring about

a (100 × q)% change in the estimate at the significance level of α, while any omitted variable that

does not explain RVq∗,α(λ) of the residual variance, neither of Z nor of Y , is not sufficiently strong

to do so.

A visual depiction of the RV and XRV

Visually depicting the RV and the XRV in a sensitivity contour plot may be helpful. Consider

Figure 1. The horizontal axis describes R2
Z∼W |X and the vertical axis describes R2

Y∼W |Z,X . The

contour lines show the adjusted t-value for testing the null hypothesis of zero effect for the reduced

form regression (of Table 5), had we adjusted for W with such hypothetical strength (considering

that adjustment reduces the t-value). The red dashed line shows a critical contour of interest, such

as statistical significance at the α = 0.05 level. The RV (when both values reach their bounds) sum-

marizes the point of equal values on both axis of the critical contour, whereas the XRV summarizes

the vertical line tangent to the critical contour, which will never be crossed.
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Figure 1: Sensitivity contours of the reduced form of Card (1993) depicting the RV and the XRV.

3.4 Bounding the strength of the omitted variable using observed covariates

One further result is required before turning to the sensitivity of IV estimates. Let Xj be a specific

covariate of the set X, and define

kZ :=
R2
Z∼W |X−j

R2
Z∼Xj |X−j

, kY :=
R2
Y∼W |Z,X−j

R2
Y∼Xj |ZX−j

. (28)

where X−j represents the vector of covariates X excluding Xj . These new parameters, kZ and kY ,

stand for how much “stronger” W is relatively to the observed covariate Xj in terms of residual

variation explained of Z and Y . Our goal in this section is to re-express (or bound) the sensitivity

parameters R2
Z∼W |X and R2

Y∼W |Z,X in terms of the relative strength parameters kZ and kY .

We start by restating the bounds derived in Cinelli and Hazlett (2020, Sec. 4.4). These are

particularly useful when contemplating Xj and W both confounders of Z (violations of the ignora-

bility of the instrument). Let R2
W∼Xj |X−j = 0 (or, equivalently, consider the part of W not linearly

explained by X). Then the previous sensitivity parameters can be written as

R2
Z∼W |X = kZf

2
Z∼Xj |X−j , R2

Y∼W |Z,X ≤ η
2f2Y∼Xj |Z,X−j (29)

where η is a function of both parameters kY , kZ and R2
Z∼Xj |X−j .

In the instrumental variable setting, however, W and Xj may be side-effects of Z, instead of

causes of Z (violations of the exclusion restriction). In such cases, reasoning about the orthogonal-

ity of X and W may not be natural, as the instrument itself is a source of dependence between

these variables. Therefore, here we additionally provide bounds under the alternative condition
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R2
W∼Xj |Z,X−j = 0. We then have that

R2
Z∼W |X ≤ η

′f2Z∼Xj |X−j , R2
Y∼W |Z,X = kY f

2
Y∼Xj |Z,X−j (30)

where η′ is a function of kZ and R2
Z∼Xj |X−j (see Appendix D for details).

These results allow investigators to leverage knowledge of relative importance of variables (Kruskal

and Majors, 1989) when making plausibility judgments regarding sensitivity parameters. For in-

stance, if researchers have domain knowledge to argue that a certain observed covariate Xj is sup-

posed to be a strong determinant of the instrument and the outcome variation, and that the omitted

variable W is not likely to explain as much residual variance of Z and Y as that observed covariate,

such results can be used to set plausible bounds on the maximum bias due to the omission of W .

4 An omitted variable bias framework for the sensitivity of IV

We are now ready to develop a suite of sensitivity analysis tools for instrumental variable regression.

In this section, we first show how separate sensitivity analysis of the reduced form and first stage

is sufficient to draw many valuable conclusions regarding the sensitivity of IV. We then construct

a complete OVB framework for sensitivity analysis of IV within the Anderson-Rubin approach,

allowing one to investigate the sensitivity of tests to any specific hypothesis, the sensitivity of lower

and upper limits of confidence intervals, to define and compute sensitivity statistics for routine

reporting for IV, such as (extreme) robustness values, as well as providing bounds on the sensitivity

parameters, on the basis of comparison to observed covariates.

4.1 Sensitivity analysis of the reduced form and first stage

The recent literature on instrumental variables places strong emphasis on the first-stage and the

reduced-form estimates. Not only are the first stage and reduced form often substantively meaningful

on their own, but their critical examination plays an important role for motivating the causal story

behind a particular instrumental variable. For example, in the “local average treatment effect”

interpretation of the IV estimand, both the first stage and the reduced form must be unconfounded

so that the resulting estimate can be interpreted as the average causal effect among compliers (Angrist

et al., 1996). Therefore, beyond a means to the final IV estimate, researchers are advised to report

and to interpret the first stage and the reduced form by, for example, assessing whether those results

are in accordance to the postulated mechanisms that justify the choice of instrument (Angrist and

Krueger, 2001; Angrist and Pischke, 2009; Imbens, 2014; Angrist and Pischke, 2014; Imbens and

Rubin, 2015a). While investigating these separate regressions, researchers can deploy all sensitivity

analysis results discussed in the previous section.

Fortunately, such sensitivity analyses also provide answers to many pivotal sensitivity questions

regarding the IV estimate itself. In particular, if the investigator is interested in assessing the

strength of confounders or side-effects needed to bring the IV point estimate to zero, or to not reject
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the null hypothesis of zero effect, the results of the sensitivity analysis of the reduced form is all that

is needed.14 If interest lies in also determining whether the IV estimate could be arbitrarily large

in either direction, then the sensitivity of the first stage must also be assessed, as omitted variables

capable of changing the direction of the first stage can lead to unbounded IV estimates. We now

give a more precise meaning to these claims.

4.1.1 What the reduced form and first stage reveal about the IV point estimate

Recall that all IV estimators under consideration are algebraically equivalent, equal to the ratio of

the reduced-form and the first-stage regression coefficients,

τ̂ := τ̂ILS = τ̂2SLS = τ̂AR =
λ̂

θ̂
(31)

This simple algebraic fact allows us to draw two important conclusions regarding the sensitivity of

τ̂ from the sensitivity of λ̂ and θ̂ alone.

First, residual biases can bring the IV point estimate to zero if, and only if, they can bring the

reduced-form point estimate to zero. Therefore, if sensitivity analysis of the reduced form reveals

that omitted variables are not strong enough to explain away λ̂, then they also cannot explain away

the IV point estimate τ̂ . Or, more worrisome, if analysis reveals that it takes weak confounding or

side-effects to explain away λ̂, the same holds for the IV estimate τ̂ . In sum, for all IV estimators

considered here, to assess the strength of biases needed to bring the IV point estimate to zero, one

needs only to perform a sensitivity analysis on the reduced-form regression coefficient.

Second, if we cannot rule out confounders or side-effects that are sufficiently strong to change the

sign of the first-stage point estimate θ̂, then we also cannot rule out that the IV point estimate τ̂ could

be arbitrarily large in either direction, even if not exactly equal to zero. This can be immediately

seen by letting θ̂ approach zero on either side of the limit. Thus, whenever we are interested in biases

as large or larger than a certain amount, the robustness of the first stage to the zero null puts an

upper bound on the robustness of the IV point estimate.

4.1.2 What the reduced form and first stage reveal about IV hypothesis tests

Contrary to the point estimate, the different approaches presented here may lead to different conclu-

sions regarding how omitted variables would have changed inferences. Let us start by examining the

Anderson-Rubin/Fieller approach, as it has nominal coverage regardless of instrument strength, and

its conclusions match the intuition of current guidelines when assessing the first-stage and reduced-

form estimates (Angrist and Krueger, 2001; Angrist and Pischke, 2009, 2014).

14The value of null hypothesis significance testing has been the subject of considerable debate (see eg. Ziliak and
McCloskey, 2008; Cinelli, 2012; Benjamin et al., 2018; Amrhein and Greenland, 2018). We are not advocating for
researchers to focus on the null H0 : τ = 0. Rather, we show that whenever researchers are interested in such a
null—as remains very common in practice—then the sensitivity of the reduced form is all that is needed. Further,
while this special case is a convenient one, our methods are not restricted to it. Section 4.2 develops a complete suite
of sensitivity analysis tools of IV, allowing the construction of confidence intervals or tests of any null.
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Consider again the IV estimand

τ =
λ

θ

Note that the same arguments we used before for the estimator hold for the estimand. Logically,

provided the ratio is well defined (θ 6= 0), we have that τ = 0 ⇐⇒ λ = 0. Therefore, a test of

the null hypothesis H0 : λ = 0 in the reduced-form regression is logically equivalent to a test of

the null hypothesis H0 : τ = 0 for the IV estimand. Similarly, for a fixed λ, if we cannot rule out

that θ is arbitrarily close to zero in either direction, then, logically, we also cannot rule out that

τ is arbitrarily large in either direction—a test for the null hypothesis H0 : θ = 0 is thus logically

equivalent to testing whether arbitrarily large sizes for τ can be ruled out.

The Anderson-Rubin/Fieller approach is coherent with respect to these logical implications.

Recall the Anderson-Rubin test for the null hypothesisH0 : τ = τ0 is based on the test ofH0 : φτ0 = 0.

By the FWL theorem, the point estimate and (estimated) standard error for φ̂τ0 can be expressed

in terms of the first-stage and reduced-form estimates (see Appendix A)

φ̂τ0 = λ̂− τ0θ̂, ŝe(φ̂τ0) =

√
v̂ar(λ̂) + τ20 v̂ar(θ̂)− 2τ0ĉov(λ̂, θ̂) (32)

Testing H0 : φτ0 = 0 requires comparing the t-value for φ̂τ0 with a critical threshold t∗α,df −1, and

the null hypothesis is not rejected if |tφ̂τ0 | ≤ t
∗
α,df −1. Squaring and rearranging terms we obtain the

quadratic inequality which must hold for non-rejection:(
θ̂2 − v̂ar(θ̂)× t∗2α,df −1

)
︸ ︷︷ ︸

a

τ20 + 2
(

ĉov(λ̂, θ̂)× t∗2α,df −1 − λ̂θ̂
)

︸ ︷︷ ︸
b

τ0 +
(
λ̂2 − v̂ar(λ̂)× t∗2α,df −1

)
︸ ︷︷ ︸

c

≤ 0 (33)

When considering the null hypothesis H0 : τ0 = 0, only the term c remains, and c is less or equal to

zero if and only if one cannot reject the null hypothesis H0 : λ = 0 in the reduced-form regression.

The Anderson-Rubin approach thus comports with the recommendation of Angrist and Krueger

(2001) that “if you can’t see the causal relation of interest in the reduced form, it’s probably not

there.” Also note that arbitrarily large values for τ0 will satisfy the inequality in Equation 33 if,

and only if, a < 0, meaning that we cannot reject the null hypothesis H0 : θ = 0 in the first-stage

regression. This supports the recommendation that, if one is unsure about the direction of the first

stage, it is likely that very little can be said about the magnitude of the IV estimate.

Within the Anderson-Rubin framework, we thus reach analogous conclusions regarding hypoth-

esis testing as those regarding the point estimate: (i) when interest lies in the zero null hypothesis,

the sensitivity of the reduced form is exactly the sensitivity of the IV—no other analyses are needed.

Confounders or side-effects sufficiently strong to bring the reduced form to a region where it is not

statistically different than zero can also bring the IV estimate to a region where it is not statistically

different than zero, and only omitted variables with such strength are capable of doing so; and, (ii) if

one is interested in biases of a certain amount, or larger, then the sensitivity of the first stage to

the zero null hypothesis needs also to be assessed. Specifically, for any null hypothesis of interest
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H0 : τ = τ0, omitted variables that are strong enough to make the first stage not statistically different

from zero may also lead us to not reject values arbitrarily “worse” than τ0.

As is well known, it is not uncommon for frequentist statistical tests to lead to logically incoherent

decisions (Gabriel, 1969; Schervish, 1996; Patriota, 2013; Fossaluza et al., 2017). While inferences

made in the Anderson-Rubin approach have the expected behavior in this setting, inferences using

ILS or 2SLS may not. Cases can be found for ILS and 2SLS where, for instance, one fails to reject

the null hypothesis H0 : λ = 0, yet still rejects the null hypothesis H0 : τ = 0 (and vice-versa).

Such claims do not conform to current guidelines for interpreting the first-stage and reduced-form

regressions (Angrist and Pischke, 2009).

4.2 Sensitivity analysis of the IV in the Anderson-Rubin approach

We now develop a complete set of sensitivity analysis tools for IV. We focus on the Anderson-Rubin

approach for this task because: (i) it allows performing sensitivity analysis of the IV with only two

interpretable sensitivity parameters; (ii) it has correct test size regardless of “instrument strength”;

and, (iii) its conclusions conform to current recommendations regarding the interpretation of the

first-stage and reduced-form regressions.

4.2.1 Sensitivity for testing a specific null hypothesis

We begin by examining the sensitivity of the t-value for testing a specific null hypothesis H0 : τ = τ0,

as this is a straightforward application of the tools of Section 3. Recall that, in the Anderson-Rubin

approach, a test for the null hypothesis H0 : τ = τ0 is a test for the null hypothesis H0 : φτ0 = 0

in the regression of Yτ0 on the instrument Z and covariates X and W . Therefore, standard OLS

sensitivity analysis for testing the null hypothesis H0 : φτ0 = 0 on the Anderson-Rubin regression

gives the desired results for H0 : τ = τ0.

In detail, a sensitivity analysis for the null hypothesis that the IV estimate τ equals some τ0 can

be performed as follows:

1. Construct Yτ0 = Y − τ0D under the null value H0 : τ = τ0;

2. Run the OLS model Yτ0 = φ̂res,τ0Z + Xβ̂res,τ0 + ε̂τ0,res;

3. Perform regular OLS sensitivity analysis for the null H0 : φτ0 = 0.

This procedure can both tell us how omitted variables no worse than R2 = {R2
Z∼W |X , R

2
Yτ0∼W |Z,X

}
would alter inferences regarding the null H0 : τ = τ0, or what is the minimal strength of R2 that is

required to not reject the null H0 : τ = τ0, as given by the RV or XRV.

Making sense of the sensitivity parameters. While separate analyses of the first stage and

reduced form regressions may suggest the need of three sensitivity parameters for the sensitivity of IV

(e.g, R2
Z∼W |X , R2

D∼W |Z,X and R2
Y∼W |Z,X), note how within the Anderson-Rubin approach one is

able to perform sensitivity with only two parameters (R2
Z∼W |X , R

2
Yτ0∼W |Z,X

). The meaning of the
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parameter related with the instrument (R2
Z∼W |X) is unchanged and straightforward, ie., the share

of residual variation of the instrument explained by the omitted variable W . The main difference

concerns the parameter R2
Yτ0∼W |Z,X

, which stands for the share of residual variance of Yτ0 explained

by W . The substantive interpretation of Yτ0 depends on the causal assumptions the researcher is

willing to defend. For instance, under H0 : τ = τ0 and a constant treatment effects model, we

have that Yτ0 = Y − τ0D equals the untreated potential outcome Y0 and thus R2
Yτ0∼W |Z,X

could be

interpreted as the share of residual variance of Y0 explained by W . For simplicity of exposition, we

adopt this interpretation throughout the text.

4.2.2 Compatible inferences given bounds on partial R2

Instead of assessing the sensitivity of the test statistic for specific a null hypothesis, investigators

may be interested in recovering the whole set of inferences compatible with plausibility judgments

on the maximum strength of W . As discussed in Section 2, for a critical threshold t∗α,df −1, the

confidence interval for τ in the Anderson-Rubin framework is given by

CI1−α(τ) = {τ0; t2φτ0 ≤ t
∗2
α,df −1} (34)

Now consider bounds on sensitivity parameters R2
Yτ0∼W |Z,X

≤ R2max
Y0∼W |Z,X (which should be judged

to hold regardless of the value of τ0) and R2
Z∼W |X ≤ R

2max
Z∼W |X . Let t†max

α,df −1,R2 denote the maximum

bias-adjusted critical value under the posited bounds on the strength of W . The set of compatible

inferences for τ , CImax
1−α,R2(τ) is then simply given by

CImax
1−α,R2(τ) =

{
τ0; t

2
φ̂res,τ0

≤
(
t†max
α,df −1,R2

)2}
(35)

This interval can be found analytically using the same inequality as in Equation 33, now with the

parameters of the restricted regression actually run, and the traditional critical value replaced by

the bias-adjusted critical value t†max
α,df −1,R2(

θ̂2res − v̂ar(θ̂res)×
(
t†max
α,df −1,R2

)2)
︸ ︷︷ ︸

a

τ20 + 2

(
ĉov(λ̂res, θ̂res)×

(
t†max
α,df −1,R2

)2
− λ̂resθ̂res

)
︸ ︷︷ ︸

b

τ0

+

(
λ̂2res − v̂ar(λ̂res)×

(
t†max
α,df −1,R2

)2)
︸ ︷︷ ︸

c

≤ 0 (36)

Note that users can easily obtain CImax
1−α,R2(τ) with any software that computes Anderson-Rubin or

Fieller’s confidence intervals by simply providing the modified critical threshold t†max
α,df −1,R2 .

It is now useful to discuss the possible shapes of CImax
1−α,R2 as this will help understanding the

robustness values for IV we derive next. Let r = {rmin, rmax} denote the roots of the quadratic equa-

tion, which can be written as r = −b±
√

∆/2a, with ∆ = b2−4ac. If a > 0 (i.e, we have a statistically
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significant first stage), the quadratic equation will be convex, and thus only the values between the

roots will be non-positive. This leads to the connected confidence interval CImax
1−α,R2 = [rmin, rmax].

When a < 0 (i.e, the null hypothesis of zero for the first stage is not rejected), the curve is concave

and this leads to unbounded confidence intervals. Here we have two sub-cases: (i) when ∆ < 0, the

quadratic curve never touches zero, and thus the confidence interval is simply the whole real line

CImax
1−α,R2 = (−∞,+∞); and, (ii) when ∆ > 0 the confidence interval will be union of two disjoint

intervals CImax
1−α,R2 = (−∞, rmin] ∪ [rmax,+∞).15

4.2.3 Sensitivity statistics for routine reporting

Armed with the notion of a set of compatible inferences for IV, CImax
1−α,R2(τ), we are now able to

formally define and derive (extreme) robustness values for instrumental variable estimates.

Extreme robustness values for IV. The extreme robustness value XRVq∗,α(τ) for the IV esti-

mate is defined as the minimum strength of association of omitted variables with the instrument so

that we cannot reject a reduction of (100× q∗)% of the original IV estimate; that is,

XRVq∗,α(τ) := inf
{

XRV; (1− q∗)τ̂res ∈ CImax
1−α,1,XRV(τ)

}
(37)

It then follows immediately from Equation 35 that

XRVq∗,α(τ) = XRV1,α(φτ∗) (38)

where τ∗ = (1− q∗)τ̂res. As in the general case, the extreme robustness value can be interpreted as

a “dampened” partial R2 of the instrument Z with the “putative” untreated potential outcome Yτ0 .

Also of interest is the special case of the minimum strength to bring the IV estimate to a region where

it is no longer statistically different than zero (q∗ = 1), in which we obtain XRV1,α(τ) = XRV1,α(λ).

That is, for the null hypothesis of H0 : τ = 0, the extreme robustness value of the IV estimate equals

the extreme robustness value of the reduced-form estimate, as we discussed in the last section.

The XRVq∗,α(τ) computes the minimal strength of W required to not reject a particular null

hypothesis of interest. We might be interested, instead, in asking about the minimal strength of

omitted variables to not reject a specific value or worse. When confidence intervals are connected,

such as the case of standard OLS, the two notions coincide. But in the Anderson-Rubin case, as

we have seen, confidence intervals for the IV estimate can sometimes consist of disjoint intervals.

Therefore, let the upper and lower limits of CImax
1−α,R2(τ) be LLmax

1−α,R2(τ) and ULmax
1−α,R2(τ) respec-

tively. The extreme robustness value XRV≥q∗,α(τ) for the IV estimate is defined as the minimum

strength of association that confounders or side-effects need to have with the instrument so that we

15See Mehlum (2020) for an intuitive graphical characterization of Fieller’s solutions using polar coordinates.
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cannot reject a change of (100× q∗)% or worse of the original IV estimate;

XRV≥q∗,α(τ) := inf
{

XRV; (1− q∗)τ̂res ∈
[
LLmax

1−α,1,XRV(τ), ULmax
1−α,1,XRV(τ)

]}
(39)

Now note that, whenever CImax
1−α,df −1(τ) is connected, we must have that XRV≥q∗,α(τ) = XRVq∗,α(τ).

On the other hand, recall that CImax
1−α,df −1(τ) will be disjoint only if t2

θ̂res
≤ (t†max

α,df −1,R2)2, which is

precisely the condition for the extreme robustness value of the first stage. Therefore,

XRV≥q∗,α(τ) = min{XRV1,α(φτ∗), XRV1,α(θ)} (40)

This corroborates our previous conclusion that, when we are interested in biases as large or larger

than a certain amount, the robustness of the IV estimate is bounded by the robustness of the first

stage assessed at the zero null.

Robustness values for IV. The definitions of the robustness value for IV follow the same logic

discussed above, but now considering both bounds on CImax
1−α,R2 varying simultaneously. That is,

RVq∗,α(τ) := inf
{

RV; (1− q∗)τ̂res ∈ CImax
1−α,RV,RV(τ)

}
(41)

Again from Equation 35 we have that

RVq∗,α(τ) = RV1,α(φτ∗) (42)

Which for the special case of q∗ = 1 simplifies to RV1,α(τ) = RV1,α(λ), as before. We can also define

robustness values for not rejecting the null hypothesis of a reduction of (100× q∗)% or worse

RV≥q∗,α(τ) := inf
{

RV; (1− q∗)τ̂res ∈
[
LLmax

1−α,RV,RV(τ), ULmax
1−α,RV,RV(τ)

]}
(43)

By the same arguments articulated above, RV≥q∗,α(τ) must be the minimum of the robustness value

of the Anderson-Rubin regression evaluated at τ∗ = (1 − q∗)τ̂res and the robustness value of the

first-stage regression evaluted at the zero null

RV≥q∗,α(τ) = min{RV1,α(φτ∗), RV1,α(θ)} (44)

For the special case of q∗ = 1 (zero null hypothesis), RV≥q∗,α(τ) simplifies to the minimum of the ro-

bustness value of the first stage and of the reduced form, RV≥q∗=1,α(τ) = min{RV1,α(λ), RV1,α(θ)}.

4.2.4 Bounds on the strength of omitted variables

The bounds discussed in Section 3.4 work without any major modifications in the Anderson-Rubin

setting. When testing a specific null hypothesis H0 : τ = τ0 in the AR regression, we have kZ as
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before, and instead of kY we now have kYτ0

kYτ0 :=
R2
Yτ0∼W |Z,X−j

R2
Yτ0∼Xj |ZX−j

. (45)

The plausibility judgment one is making here is that of how strong unobserved confounders or

side-effects are, relative to observed covariates, in explaining the residual variance of the untreated

potential outcome and of the instrument, under the null hypothesis H0 : τ = τ0.

Since the judgment is made under a specific null, the bounds will be different when testing differ-

ent hypotheses. Therefore, it may be useful to compute bounds under a slightly more conservative

assumption. More precisely, consider

kmax
Yτ0

:=
maxτ0 R

2
Yτ0∼W |Z,X−j

maxτ0 R
2
Yτ0∼Xj |ZX−j

. (46)

That is, we can posit that the omitted variables are no stronger than (a multiple of) the maximum

explanatory power of an observed covariate, regardless of the value of τ0. This has the useful property

of providing a unique valid bound for any value of the null hypothesis, and can be used to place

bounds on sensitivity contours of the lower and upper limit of the AR confidence intervals, as we

show next.

5 Using the OVB framework for the sensitivity analysis of IV

In this section we return to our running example of estimating the returns to schooling using prox-

imity to college as an instrumental variable, and show how these tools can be deployed to assess the

robustness of those findings to violations of the IV assumptions. We begin the sensitivity analysis by

examining the robustness of the first-stage and reduced-form estimates. Not only are these analyses

usually important on their own right, but in many cases—including this one—this exercise will be

sufficient to establish that the instrumental variable estimate is not very informative regarding the

causal effect of interest. We then turn to the sensitivity of the IV estimate itself, and further show

how sensitivity contour plots of the adjusted lower and upper limits of the AR confidence interval,

supplemented with benchmark bounds, give a complete, yet succinct picture of the whole range of

sensitivity of the IV analysis. Throughout, we focus the discussion on violations of the ignorability

of the instrument due to confounders, as this is the main threat of the study under investigation.

Readers should keep in mind, however, that mathematically all analyses performed here can be

equally interpreted as assessing violations of the exclusion restriction (or both).

5.1 Minimal reporting and sensitivity contours of the reduced form

Table 2 shows our proposal for a minimal sensitivity reporting of the reduced-form estimate (here, the

effect of Proximity on Earnings). Beyond the usual statistics such as the point estimate, standard-
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Outcome: Earnings (log)

Instrument Estimate Std. Error t-value R2
Y∼Z|X XRVq∗,α RVq∗,α

Proximity 0.042 0.018 2.33 0.18% 0.05% 0.67%

Bound (1x SMSA): R2
Y∼W |Z,X = 2%, R2

W∼Z|X = 0.6%, t†max
α,df −1,R2 = 2.55

Note: df = 2994, q∗ = 1, α = 0.05

Table 2: Minimal sensitivity reporting of the reduced-form regression.

error and t-value, we recommend that researchers also report the: (i) partial R2 of the instrument

with the outcome (R2
Y∼Z|X = 0.18%), as well as (ii) the robustness value (RVq∗,α = 0.67%), and

(iii) the extreme robustness value (XRVq∗,α = 0.05%), both for where the confidence interval would

cross zero (q∗ = 1), at a chosen significance level (here, α = 0.05).

In our running example, the robustness value reveals that confounders that explain 0.67% of

the residual variation both of proximity and of (log) Earnings are sufficiently strong to make the

reduced-form estimate statistically insignificant, whereas confounders that explain less than 0.67% of

the residual variation of both the instrument and of the outcome are not strong enough to do so. The

extreme robustness value and the partial R2 show that, if we are not willing to impose constraints on

the strength of confounders with the outcome, then they would need to explain less than 0.05% or

0.18% of the instrument to escape concerns of eliminating statistical significance or fully eliminating

the point estimate, respectively. To aid users in making plausibility judgments, the note of Table 2

provides the maximum strength of unobserved confounding if it were as strong as SMSA (an indicator

variable for whether the individual lived in a metropolitan region) along with the bias-adjusted

critical value for a confounder with such strength, t†max
α,df −1,R2 = 2.55. Since the observed t-value (2.33)

is less than the adjusted critical threshold of 2.55, the table immediately reveals that confounding as

strong as SMSA (for example, in the form of residual geographic confounding) is sufficiently strong

to be problematic.

Beyond the results of Table 2, researchers can also explore sensitivity contour plots of the t-

value for testing the null hypothesis of zero effect, while showing different bounds on strength of

confounding, under different assumptions of how they compare to the observed variables. This

is shown in Figure 2a. The horizontal axis describes the partial R2 of the confounder with the

instrument whereas the vertical axis describes the partial R2 of the confounder with the outcome.

The contour lines show the t-value one would have obtained, had a confounder with such postulated

strength been included in the reduced-form regression. The red dashed line shows the statistical

significance threshold, and the red diamonds places bounds on strength of confounding as strong as

Black (an indicator for race) and, again, SMSA. As we can see, confounders as strong as either Black

or SMSA are sufficient to bring the reduced form, and hence also the IV estimate, to a region which

is not statistically different from zero. Since it is not very difficult to imagine residual confounders

as strong or stronger than those (e.g., parental income, finer grained geographic location, etc), these

results for the reduced form already call into question the reliability of the instrumental variable

estimate.
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(a) Sensitivity contours of the reduced form.
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(b) Sensitivity contours of the first stage.

Figure 2: Sensitivity contour plots with benchmark bounds for the t-value of: (a) the reduced form;
and, (b) the first stage.

5.2 Minimal reporting and sensitivity contours of the first stage

Treatment: Education (years)

Instrument Estimate Std. Error t-value R2
D∼Z|X XRVq∗,α RVq∗,α

Proximity 0.32 0.088 3.64 0.44% 0.31% 3.02%

Bound (1x SMSA): R2
D∼W |Z,X = 0.5%, R2

Z∼W |X = 0.6%, t†max
α,df −1,R2 = 2.26

Note: df = 2994, q∗ = 1, α = 0.05

Table 3: Minimal sensitivity reporting of the first-stage regression.

Table 3 performs the same sensitivity exercises as before, but now for the regression of Education

(treatment) on Proximity (instrument). As expected, the association of proximity to college with

years of education is stronger than its association with earnings, and this is also reflected in the

robustness statistics, which are slightly higher (R2
D∼Z|X = 0.44%, XRVq∗,α = 0.31% and RVq∗,α =

3.02%). As the note of Table 3 shows, confounding as strong as SMSA would not be sufficiently

strong to bring the first-stage estimate to a region where it is not statistically different than zero.

Figure 2b supplements those analysis with the sensitivity contour plot for the t-value of the first-

stage regression. Here the horizontal axis still describes the partial R2 of the confounder with the

instrument, but now the vertical axis describes the partial R2 of the confounder with the treatment.

The plot reveals that, contrary to the reduced form, the first stage survives confounding once or twice

as strong as Black or SMSA. The contrast of both sensitivity results suggests that, in our running
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example, the most evident risk to the validity of the IV estimate comes from residual confounding

on the reduced-form estimate.

5.3 Minimal reporting and sensitivity contours of the IV

Outcome: Earnings (log)

Treatment Estimate LL1−α UL1−α t-value XRV≥q∗,α RV≥q∗,α
Education (years) 0.132 0.025 0.285 2.33 0.05% 0.67%

Bound (1x SMSA): R2
Y0∼W |Z,X = 2%, R2

W∼Z|X = 0.6%, t†max
α,df −1,R2 = 2.55

Note: df = 2994, q∗ = 1, α = 0.05

Table 4: Minimal sensitivity reporting of IV estimate (Anderson-Rubin).

Finally, we turn our attention to the sensitivity analysis of the IV, and Table 4 shows our

proposed minimal sensitivity reporting. We start with the IV point estimate (0.132), as well as the

lower limit (LL1−α = 0.025) and the upper limit (UL1−α = 0.285) of the Anderson-Rubin confidence

interval. The t-value for testing the null hypothesis of zero effect is also shown (2.33). Next, we

propose researchers report the extreme robustness value XRV≥q∗,α and the robustness value RV≥q∗,α

for bringing the lower limit of the confidence interval to or beyond zero (or another meaningful

threshold), at the 5% significance level. As derived in Section 4.2.3, the (extreme) robustness value

of the IV estimate for bringing the lower limit of the confidence interval to zero or below is the

minimum of either the (extreme) robustness value of the reduced form and the (extreme) robustness

value of the first stage. Therefore, the sensitivity statistics of Table 4 essentially reproduce the

results of Table 2.

After examining the sensitivity of the first stage and reduced form it is thus, more informative to

assess the sensitivity of the IV against values other than zero. To that end, investigators may wish

to examine sensitivity contour plots similar to those of Figure 2, but with contours now showing the

adjusted lower and upper limits of the confidence interval. These contours are shown in Figure 3,

with the horizontal axis indicating the partial R2 of the confounder with the instrument, and the

vertical axis now indicating the partial R2 of the confounder with the untreated potential outcome.

The contour lines show the worst lower (or upper) limit of the set of compatible inferences considering

confounders bounded by such strength. Red dashed lines shows a critical contour line of interest

(such as zero) as well as the boundary beyond confidence intervals become unbounded. As the plot

reveals, even confounding as strong as SMSA could lead to an interval of compatible inferences for

the causal effect of CImax
1−α,R2(τ) = [−0.02, 0.40], which includes not only the original OLS estimate

(7.5%), but also implausibly high values (40%), or even negative values (-2%), and is thus too wide

for any meaningful conclusions regarding the “true” returns to schooling. That is, if we are concerned

that omitted variables as strong as SMSA might exist, then we are unable to reject any estimates in

this range, calling into question the strength of evidence provided by this particular IV study.
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(a) Sensitivity contours for the lower limit.
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(b) Sensitivity contours for the upper limit.

Figure 3: Sensitivity contour plots for the lower (a) and upper (b) limits of the 95% confidence
interval for the IV estimate.

6 Conclusion

In this paper we developed a suite of sensitivity analysis tools for IV that naturally handles multiple

“side-effects” and confounders of the instrument, does not require assumptions on the functional

form of such omitted variables, and allows exploiting expert knowledge to bound sensitivity param-

eters. In particular, we introduced new sensitivity statistics for IV estimates that are suited for

routine reporting, such as (extreme) robustness values, describing the minimum strength that omit-

ted variables need to have, both with the instrument, and with the untreated potential outcome, to

overturn the conclusions of an IV study. We also introduced a novel “bias-adjusted” critical value

that allows researchers to easily perform hypothesis tests or construct confidence intervals that ac-

counts for omitted variable bias of any postulated strength, by simply replacing traditional critical

values with the adjusted ones. Finally, we showed how intuitive visual displays can be deployed to

fully characterize the sensitivity of IV to violations of its standard assumptions. In this work we have

focused on the sensitivity analysis of the “traditional” IV estimand, consisting of the ratio of two

OLS regression coefficients. We have chosen to do so because this encompasses the vast majority

of current applied work using instrumental variables. Recent work, however, has questioned the

causal interpretation of the traditional IV estimand, as it relies on strong parametric assumptions

(S loczyński, 2020; Blandhol et al., 2022). Extension of the sensitivity tools we present here to the

nonparametric case is possible by leveraging recent results in Chernozhukov et al. (2022), and it is

an interesting direction for future work.
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Appendix for

“An Omitted Variable Bias Framework for Sensitivity Analysis of

Instrumental Variables”

Carlos Cinelli & Chad Hazlett

A The mechanics of IV estimation

For ease of reference, in this section we show in detail some of the algebraic identities (and differences)
of the main approaches to IV estimation.

Notation. We denote by Y the (n× 1) vector of the outcome of interest with n observations; by
D the (n×1) treatment vector; by Z the (n×1) vector of the instrument; by X an (n×p) matrix of
observed covariates (including a constant), and by W an (n×l) matrix of unobserved covariates. We
use Y ⊥X to denote the part of Y not linearly explained by X, that is, Y ⊥X := Y −X(X ′X)−1X ′Y .
Throughout, we assume that the relevant matrices have full rank. Here df := n− p− l − 1.

A.1 Indirect Least Squares (ILS)

ILS is perhaps the most straightforward approach to instrumental variable estimation. We start
with two OLS models, one capturing the effect of the instrument on the treatment (first stage) and
another the effect of the instrument on the outcome (reduced form),

First stage: D = θ̂Z + Xψ̂ + W δ̂ + ε̂d (47)

Reduced form: Y = λ̂Z + Xβ̂ + W γ̂ + ε̂y (48)

Where θ̂, ψ̂ and δ̂ are the OLS estimates of the regression of D on Z, X and W , and ε̂d its
corresponding residuals; analogously, λ̂, β̂ and γ̂ are the OLS estimates of the regression of Y on Z,
X and W , and ε̂y its corresponding residuals.

Point Estimate. The estimator for τ is constructed by simply using the plug-in principle and
taking the ratio of λ̂ and θ̂

τ̂ILS :=
λ̂

θ̂
(49)

Inference. Inference in the ILS framework is usually performed using the delta-method, with
estimated variance

v̂ar(τ̂ILS) :=
1

θ̂2

(
v̂ar(λ̂) + τ̂2ILSv̂ar(θ̂)− 2τ̂ILSĉov(λ̂, θ̂)

)
(50)

where, using the FWL formulation,

v̂ar(λ̂) =
var(Y ⊥Z,X,W )

var(Z⊥X,W )
× df−1, v̂ar(θ̂) =

var(D⊥Z,X,W )

var(Z⊥X,W )
× df−1 (51)
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are the estimated variances of the reduced form and first stage, and

ĉov(λ̂, θ̂) =
cov(Y ⊥Z,X,W , D⊥Z,X,W )

var(Z⊥X,W )
× df−1 (52)

is the estimated covariance of λ̂ and θ̂. Here var(·) and cov(·) denote sample variances of covariances.

A.2 Two-Stage Least Squares (2SLS)

A closely related approach for instrumental variable estimation is denoted by “two-stage least
squares” (2SLS). As its name suggests, this involves two nested steps of OLS estimation: a first-stage
regression given by Equation 47 to produce fitted values for the treatment (D̂), then regressing the
outcome on these fitted values,

Second stage: Y = τ̂2SLSD̂ + Xβ̂2SLS + W γ̂2SLS + ε̂2SLS (53)

The 2SLS estimate corresponds to the coefficient τ̂2SLS in Equation 53, called the “second-stage”
regression.

Point Estimate. By the FWL theorem, the 2SLS point estimate can be written as

τ̂2SLS =
cov(Y ⊥X,W , D̂⊥X,W )

var(D̂⊥X,W )
(54)

In the just-identified case, the ILS and 2SLS point estimates are numerically identical. Expanding
D̂ and partialling out {X,W } we have that

τ̂2SLS =
cov(Y ⊥X,W , D̂⊥X,W )

var(D̂⊥X,W )
=

cov(Y ⊥X,W , θ̂Z⊥X,W )

var(θ̂Z⊥X,W )
(55)

=
θ̂ × cov(Y ⊥X,W , Z⊥X,W )

θ̂2 × var(Z⊥X,W )
=
λ̂

θ̂
(56)

Which establishes the equality τ̂2SLS = τ̂ILS =: τ̂ .

Inference. By the FWL theorem, the standard two-stage least squares estimate of the variance of
τ̂2SLS can be written as

v̂ar(τ̂2SLS) :=
var(Y ⊥X,W − τ̂D⊥X,W )

var(D̂⊥X,W )
× df−1 (57)

As with the point estimate, for the just-identified case, the estimated variance of ILS and 2SLS are
numerically identical. To see why, note the denominator of Equation 57 can be expanded to

var(D̂⊥X,W ) = var(θ̂Z⊥X,W ) = θ̂2 var(Z⊥X,W ) (58)
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Finally, the numerator can be written as,

var(Y ⊥X,W − τ̂D⊥X,W ) = var(Y ⊥X,W − τ̂(θ̂ZX,W +D⊥Z,X,W )) (59)

= var((Y ⊥X,W − λ̂ZX,W )− τ̂D⊥Z,X,W ) (60)

= var(Y ⊥Z,X,W − τ̂D⊥Z,X,W ) (61)

= var(Y ⊥Z,X,W ) + τ̂2 var(D⊥Z,X,W )− 2τ̂ cov(Y ⊥Z,X,W , D⊥Z,X,W )
(62)

Plugging in Equations 62 and 58 back in Equation 57, then using Equations 51 and 52 establishes
the desired equality.

A.3 Anderson-Rubin (AR)

The Anderson-Rubin approach (Anderson and Rubin, 1949) starts by creating the random variable
Yτ0 := Y − τ0D in which we subtract from Y a “putative” causal effect of D, namely, τ0. If Z is a
valid instrument, under the null hypothesis H0 : τ = τ0, we should not see an association between
Yτ0 and Z, conditional on X and W . In other words, if we run the OLS model

Anderson-Rubin: Yτ0 = φ̂τ0Z + Xβ̂τ0 + W γ̂τ0 + ε̂τ0 (63)

we should find that φ̂τ0 is equal to zero, but for sampling variation. This forms the basis for the
point estimate and confidence interval in the AR approach.

Point Estimate. We define the Anderson-Rubin point estimate to be the value of τ0 that makes
φ̂ = 0, ie,

τ̂AR = {τ0; φ̂τ0 = 0} (64)

Resorting again to the FWL theorem, we can write the regression coefficient of the AR regression,
φ̂τ0 , as a function of the regression coefficients of the first stage and reduced form,

φ̂τ0 =
cov(Y ⊥X,W − τ0D⊥X,W , Z⊥X,W )

var(Z⊥X,W )
(65)

=
cov(Y ⊥X,W , Z⊥X,W )

var(Z⊥X,W )
− τ0

cov(D⊥X,W , Z⊥X,W )

var(Z⊥X,W )
(66)

= λ̂− τ0θ̂ (67)

Thus solving for the condition φ̂τ0 = 0 gives us

τ̂AR =
λ̂

θ̂
(68)

Which establishes the equality τ̂AR = τ̂ILS . Therefore, all the point estimates of ILS, 2SLS and AR
are numerically identical.
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Inference. The AR confidence interval with significance level α is defined as all values of τ0 such
that we cannot reject the null hypothesis H0 : φτ0 = 0 at the chosen significance level

CI1−α(τ) = {τ0; t2φ̂τ0
≤ t∗2α,df} (69)

This confidence interval can be obtained analytically as functions of the estimates of the first-stage
and reduced form regressions. As shown in Equation 67, φ̂τ0 can be written as the linear combination

φ̂τ0 = λ̂− τ0θ̂ (70)

Likewise, by the FWL theorem, the estimated variance of φ̂τ0 is given by

v̂ar(φ̂τ0) =
var(Y ⊥Z,X,W − τ0D⊥Z,X,W )

var(Z⊥X,W )
× df−1 (71)

=

(
var(Y ⊥Z,X,W )

var(Z⊥X,W )
+ τ20

var(D⊥Z,X,W )

var(Z⊥X,W )
− 2τ0

cov(Y ⊥Z,X,W , D⊥Z,X,W )

var(Z⊥X,W )

)
× df−1 (72)

= v̂ar(λ̂) + τ20 v̂ar(θ̂)− 2τ0ĉov(λ̂, θ̂) (73)

Thus, we obtain that the t-value tφ̂τ0
for testing the null hypothesis H0 : φτ0 = 0 equals to

tφ̂τ0
=

λ̂− τ0θ̂√
v̂ar(λ̂) + τ20 v̂ar(θ̂)− 2τ0ĉov(λ̂, θ̂)

(74)

And our task is to find all values of τ0 such that the following inequality holds

(λ̂− τ0θ̂)2

v̂ar(λ̂) + τ20 v̂ar(θ̂)− 2τ0ĉov(λ̂, θ̂)
≤ t∗2α,df (75)

First, note that the empty set is not possible here. If we pick τ0 = τ̂AR, then the numerator
in Equation 75 is zero, and the inequality trivially holds—therefore, the point-estimate is always
included in the confidence interval. Now squaring and rearranging terms we obtain(

θ̂2 − v̂ar(θ̂)× t∗2α,df
)

︸ ︷︷ ︸
a

τ20 + 2
(

ĉov(λ̂, θ̂)× t∗2α,df − λ̂θ̂
)

︸ ︷︷ ︸
b

τ0 +
(
λ̂2 − v̂ar(λ̂)× t∗2α,df

)
︸ ︷︷ ︸

c

≤ 0 (76)

Our task has simplified to find all values of τ0 that makes the above quadratic equation, with
coefficients a, b and c, non-positive. As discussed in Section 4.2.2, this confidence intervals can take
three different forms, depending on the instrument strength: (i) finite and connected, (ii) the union
two disjoint half lines; or, (iii) the whole real line.

A.4 Fieller’s theorem

Fieller’s proposal to test the null hypothesis H0 : τ = τ0 is to construct the linear combination
φ̂τ0 = λ̂− τ0θ̂, and to test the null hypothesis H0 : φτ0 = 0. The standard estimated variance for φ̂τ0
equals Equation 73, resulting in a test statistic equal to Equation 74, and thus numerically identical
to the AR approach.
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B Bias-adjusted critical values and set of compatible inferences

B.1 Bias-adjusted critical values

As in the main text, using the reduced form as an example, let LL1−α(λ) := λ̂− t∗α,df −1 × ŝe(λ̂) be
the lower limit of a 1− α level confidence interval of the full reduced form regression, where t∗α,df −1
denotes the critical α-level threshold of the t-distribution with df −1 degrees of freedom. Considering
the direction of the bias that reduces the lower limit, Equations 12 and 14 imply

LL1−α(λ) := λ̂− t∗α,df −1 × ŝe(λ̂) (77)

= λ̂res − BF
√

df × ŝe(λ̂res)− t∗α,df −1 × SEF
√

df /(df −1)× ŝe(λ̂res) (78)

= λ̂res −
(

SEF
√

df /(df −1)× t∗α,df −1 + BF
√

df
)
× ŝe(λ̂res) (79)

Similarly, now let UL1−α(λ) the upper limit of the confidence interval and consider the direction of
the bias that increases the upper limit. By the same algebraic manipulations, we obtain

UL1−α(λ) = λ̂res +
(

SEF
√

df /(df −1)× t∗α,df −1 + BF
√

df
)
× ŝe(λ̂res) (80)

Note that, in both Equations 79 and 80, the only part that depends on the omitted variable W is
the common multiple of the observed standard error, which defines the new bias-adjusted critical
value,

t†
α,df −1,R2 := SEF

√
df /(df −1)× t∗α,df −1 + BF

√
df. (81)

B.2 Compatible inferences given bounds on the partial R2

Now suppose the analyst wishes to investigate the worst possible lower (or upper) limits of the
confidence intervals induced by a confounder with strength no stronger than certain bounds, for
instance, R2

Y∼W |Z,X ≤ R2max
Y∼W |Z,X and R2

Z∼W |X ≤ R2max
Z∼W |X . As per the last section, this amounts

to finding the largest bias-adjusted critical value induced by an omitted variable W with at most
such strength. That is, we need to solve the following maximization problem

max
R2
Y∼W |Z,X ,R2

Z∼W |X

t†
α,df −1,R2 s.t. R2

Y∼W |Z,X ≤ R
2max
Y∼W |Z,X , R2

Z∼W |X ≤ R
2max
Z∼W |X (82)

Dividing t†
α,df −1,R2 by

√
df and letting f∗α,df −1 := t∗α,df −1/

√
df −1, we see that the derivative of

t†
α,df −1,R2 with respect to R2

Z∼W |X is always increasing, since

∂(t†
α,df −1,R2/

√
df)

∂R2
Z∼W |X

=
∂ BF

∂R2
Z∼W |X

+ f∗α,df −1 ×
∂ SEF

∂R2
Z∼W |X

(83)

=
(R2

Y∼W |Z,X)1/2

2(1−R2
Z∼W |X)3/2(R2

Z∼W |X)1/2
+ f∗α,df −1

(1−R2
Y∼W |Z,X)1/2

2(1−R2
Z∼W |X)3/2

(84)

=
(R2

Y∼W |Z,X)1/2 + f∗α,df −1(1−R2
Y∼W |Z,X)1/2(R2

Z∼W |X)1/2

2(1−R2
Z∼W |X)3/2(R2

Z∼W |X)1/2
≥ 0 (85)
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Therefore, the “optimal” R2∗
Z∼W |X (the one the minimizes (maximizes) the lower (upper) limit of

the confidence interval) always reaches the bound. However, the same is not true for the derivative
with respect to R2

Y∼W |Z,X . To see that, write,

∂(t†
α,df −1,R2/

√
df)

∂R2
Y∼W |Z,X

=
∂ BF

∂R2
Y∼W |Z,X

+ f∗α,df −1 ×
∂ SEF

∂R2
Y∼W |Z,X

(86)

=
(R2

Z∼W |X)1/2

2(1−R2
Z∼W |X)1/2(R2

Y∼W |Z,X)1/2
+

−f∗α,df −1
2(1−R2

Y∼W |Z,X)1/2(1−R2
Z∼W |X)1/2

(87)

=
(R2

Z∼W |X)1/2(1−R2
Y∼W |Z,X)1/2 − f∗α,df −1(R2

Y∼W |Z,X)1/2

2(R2
Y∼W |Z,X)1/2(1−R2

Y∼W |Z,X)1/2(1−R2
Z∼W |X)1/2

(88)

That is, due to the variance reduction factor of the omitted variable (VRF in Equation 14), it could
be the case that increasing R2

Y∼W |Z,X reduces the standard error more than enough to compensate
for the increase in bias, resulting in tighter confidence intervals.

We have, thus, two cases. First, consider the case in which the optimal point reaches both
bounds. In that case, the numerator of Equation 88 must be positive when evaluated at the solution.
Rearranging and squaring, we see that this happens when

R2max
Z∼W |X ≥ f

∗2
α,df −1 × f2max

Y∼W |Z,X (89)

Clearly, when considering the sensitivity of the point estimate, we have f∗α,df −1 = 0, and the condition

always holds. If condition of Equation 89 fails, then the optimal R2∗
Y∼W |Z,X will be an interior point.

This will happen when the numerator of Equation 88 equals zero. Since we know R2
Z∼W |X reaches

its maximum, the optimal R2∗
Y∼W |Z,X will be,

R2∗
Y∼W |Z,X =

R2max
Z∼W |X

f∗2α,df −1 +R2max
Z∼W |X

(90)

Denoting the solution to the optimization problem as t†max
α,df −1,R2 , the most extreme possible lower

and upper limits after adjusting for W are given by

LLmax
1−α,R2(λ) = λ̂res − t†max

α,df −1,R2 × ŝe(λ̂res), ULmax
1−α,R2 = λ̂res + t†max

α,df −1,R2 × ŝe(λ̂res) (91)

And interval composed of such limits

CImax
1−α,R2(λ) =

[
LLmax

1−α,R2(λ), ULmax
1−α,R2(λ)

]
(92)

Defines the set of compatible inferences given the bounds on the partial R2, R2
Y∼W |Z,X ≤ R

2max
Y∼W |Z,X

and R2
Z∼W |X ≤ R

2max
Z∼W |X .
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C (Extreme) Robustness Values

C.1 The Extreme Robustness Value

The Extreme Robustness Value XRVq∗,α(λ) is defined as the greatest lower bound XRV on the
sensitivity parameter R2

Z∼W |X , while keeping the parameter R2
Y∼W |Z,X unconstrained, such that

the null hypothesis that a change of (100× q)% of the original estimate, H0 : λ = (1− q∗)λ̂res, is not
rejected at the α level:

XRVq∗,α(λ) := inf
{

XRV; (1− q∗)λ̂res ∈ CImax
1−α,1,XRV(λ)

}
(93)

First, consider the case where fq∗(λ) < f∗α,df −1. Note the XRV will be zero, since we already cannot

reject the null hypothesis H0 : λ = (1− q∗)λ̂res even assuming zero omitted variable bias. Next, note
that, when f∗α,df −1 > 0, we can always pick a large enough value for R2

Y∼W |Z,X until condition 89

fails (since f2Y∼W |Z,X is unbounded). Therefore, XRV will be given by an interior point solution.

Using Equation 90 to express t†max
α,df −1,R2 solely in terms of the optimal R2

Z∼W |X , and solving for the

value that gives us (1− q∗)λ̂res, we obtain

XRVq∗,α(λ) =


0, if fq∗(λ) ≤ f∗α,df−1
f2q∗(λ)− f∗2α,df−1

1 + f2q∗(λ)
, otherwise.

(94)

C.2 The Robustness Value

The Robustness Value RVq∗,α(λ) for not rejecting the null hypothesis that H0 : λ = (1− q∗)λ̂res, at
the significance level α, is defined as

RVq∗,α(λ) := inf
{

RV; (1− q∗)λ̂res ∈ CImax
1−α,RV,RV(λ)

}
(95)

Where now we consider both sensitivity parameters bounded by RV. Again, consider the case where
fq∗(λ) < f∗α,df −1. The RV then must be zero, since we already cannot reject the null hypothesis

H0 : λ = (1 − q∗)λ̂res given the current data. Next, let’s consider the case when the bound on
R2
Y∼W |Z,X is not biding—here our optimization problem reduces to the XRV case. Finally, we have

the solution in which both coordinates achieve the bound, resulting in a quadratic equation as solved
in Cinelli and Hazlett (2020). We thus have,

RVq∗,α(λ) =


0, if fq∗(λ) ≤ f∗α,df−1
1

2

(√
f4q∗,α(λ) + 4f2q∗,α(λ)− f2q∗,α(λ)

)
, if f∗α,df−1 < fq∗(λ) < f∗−1α,df−1

XRVq∗,α(λ), otherwise.

(96)

The condition fq∗(λ) < f∗−1α,df−1, stems from the fact that the XRV solution cannot satisfy Equa-

tion 89. We now show that this is equivalent to the condition RVq∗,α(λ) > 1− 1/f2q∗(λ) that Cinelli
and Hazlett (2020) had previously established. If fq∗(λ) < 1/f∗α,df−1 then,
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RVq∗,α(λ) =
1

2

(√
f4q∗,α(λ) + 4f2q∗,α(λ)− f2q∗,α(λ)

)
(97)

=
1

2

(√
(fq∗(λ)− f∗α,df−1)4 + 4(fq∗(λ)− f∗α,df−1)2 − (fq∗(λ)− f∗α,df−1)2

)
(98)

>
1

2

(√
(fq∗(λ)− 1/fq∗(λ))4 + 4(fq∗(λ)− 1/fq∗(λ))2 − (fq∗(λ)− 1/fq∗(λ))2

)
(99)

=
1

2


√√√√(f2q (λ)− 1

fq∗(λ)

)4

+ 4

(
f2q∗(λ)− 1

fq∗(λ)

)2

−

(
f2q∗(λ)− 1

fq∗(λ)

)2
 (100)

=

(
1

2

)(
f2q∗(λ)− 1

f2q∗(λ)

)(√
(f2q (λ)− 1)2 + 4f2q∗(λ)− f2q∗(λ) + 1

)
(101)

=

(
1

2

)(
1− 1/f2q∗(λ)

) (√
f4q (λ) + 1− 2f2q∗(λ) + 4f2q∗(λ)− f2q∗(λ) + 1

)
(102)

=

(
1

2

)(
1− 1/f2q∗(λ)

) (√
f4q (λ) + 1 + 2f2q∗(λ)− f2q∗(λ) + 1

)
(103)

=

(
1

2

)(
1− 1/f2q∗(λ)

) (
f2q∗(λ) + 1− f2q∗(λ) + 1

)
(104)

= 1− 1/f2q∗(λ) (105)

Therefore, fq∗(λ) < 1/f∗α,df−1 =⇒ RVq∗,α(λ) > 1 − 1/f2q∗(λ). By the same argument one can

derive RVq∗,α(λ) > 1−1/f2q∗(λ) =⇒ fq(λ) > 1/f∗α,df−1. Hence, both conditions are equivalent. The
new condition, however, is much simpler to verify.

D Bounds on the strength of W

Let Xj be a specific covariate of the set X. Now define

kZ :=
R2
Z∼W |X−j

R2
Z∼Xj |X−j

, kY :=
R2
Y∼W |Z,X−j

R2
Y∼Xj |ZX−j

. (106)

Where X−j is the set X excluding covariate Xj . Our goal in this section is to re-express (or bound)
both sensitivity parameters as a function of the new parameters kZ and kY and the observed data.

Cinelli and Hazlett (2020) showed how to obtains bounds for the strength of W under the
assumption that R2

W∼Xj |X−j = 0, or, equivalently, when we consider the part of W not linearly

explained by X. This result may be particularly useful when considering both X and W as causes
of Z, as in such cases contemplating the marginal orthogonality of W (or its part not explained by
observed covariates) is more natural.

Here we additionally provide bounds under the assumption that R2
W∼Xj |Z,X−j = 0. This condi-

tion may be helpful when contemplating the strength of W against Xj whenever these variables are
side-effects of Z, instead of causes of Z. In such cases, reasoning about the marginal orthogonality
of W with respect to X may not be natural, as Z itself is also a source of dependence between these
variables.

We can thus start by re-expressing R2
Y∼W |Z,X in terms of kY , which in this case is straight-
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forward. Using the recursive definition of partial correlations, and considering our two conditions
R2
W∼Xj |Z,X−j = 0 and R2

Y∼W |Z,X−j = kYR
2
Y∼Xj |ZX−j , we obtain

∣∣RY∼W |Z,X ∣∣ =

∣∣∣∣∣∣RY∼W |Z,X−j −RY∼Xj |Z,X−jRW∼Xj |Z,X−j√
1−R2

Y∼Xj |Z,X−j

√
1−R2

W∼Xj |Z,X−j

∣∣∣∣∣∣ (107)

=

∣∣∣∣∣∣ RY∼W |Z,X−j√
1−R2

Y∼Xj |Z,X−j

∣∣∣∣∣∣ (108)

=

∣∣∣∣∣∣
√
kYRY∼Xj |Z,X−j√
1−R2

Y∼Xj |Z,X−j

∣∣∣∣∣∣ (109)

=
√
kY

∣∣∣fY∼Xj |Z,X−j ∣∣∣ (110)

Hence,

R2
Y∼W |Z,X = kY × f2Y∼Xj |Z,X−j (111)

Moving to bound R2
Z∼W |X , it is useful to first note that the conditions R2

W∼Xj |Z,X−j = 0 and

R2
Z∼W |X−j = kZR

2
Z∼Xj |X−j allow us to re-express RW∼Xj |X−j as a function of kZ

RW∼Xj |Z,X−j = 0 =⇒
RW∼Xj |X−j −RW∼Z|X−jRXj∼Z|X−j√

1−R2
W∼Z|X−j

√
1−R2

Xj∼Z|X−j

= 0 (112)

=⇒ RW∼Xj |X−j −RW∼Z|X−jRXj∼Z|X−j = 0 (113)

=⇒ RW∼Xj |X−j = RW∼Z|X−jRXj∼Z|X−j (114)

=⇒ RW∼Xj |X−j = RZ∼W |X−jRZ∼Xj |X−j (115)

=⇒ |RW∼Xj |X−j | =
√
kZR

2
Z∼Xj |X−j (116)
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Now we can re-write R2
Z∼W |X using the recursive definition of partial correlations

∣∣RZ∼W |X ∣∣ =

∣∣∣∣∣∣RZ∼W |X−j −RZ∼Xj |X−jRW∼Xj |X−j√
1−R2

Z∼Xj |X−j

√
1−R2

W∼Xj |X−j

∣∣∣∣∣∣ (117)

≤

∣∣∣RZ∼W |X−j ∣∣∣+
∣∣∣RZ∼Xj |X−jRW∼Xj |X−j ∣∣∣√

1−R2
Z∼Xj |X−j

√
1−R2

W∼Xj |X−j

(118)

=

∣∣∣√kZRZ∼Xj |X−j ∣∣∣+
∣∣∣√kZR3

Z∼Xj |X−j

∣∣∣√
1−R2

Z∼Xj |X−j

√
1− kZR4

Z∼Xj |X−j

(119)

=

√kZ +
∣∣∣R3

Z∼Xj |X−j

∣∣∣√
1− kZR4

Z∼Xj |X−j

×


∣∣∣RZ∼Xj |X−j ∣∣∣√
1−R2

Z∼Xj |X−j

 (120)

= η′|fZ∼Xj |X−j | (121)

Hence we have that

R2
Z∼W |X ≤ η

′2f2Z∼Xj |X−j (122)

Where η′ =

√kZ+∣∣∣∣R3
Z∼Xj |X−j

∣∣∣∣√
1−kZR4

Z∼Xj |X−j

.

E Comparison with traditional approaches

Traditional approaches for the sensitivity of IV have focused on parameterizing the bias of the IV
estimate with a single coefficient that summarizes how strongly the instrument relates to the outcome
“not through” the treatment. For example, Conley et al. (2012) considers the model (for simplicity,
we omit covariates X):

Yi = τDi + ηZi + εi (123)

Where τ is the parameter of interest, and cov(Zi, εi) = 0. Here, the coefficient η is a sensitivity
parameter that directly summarizes violations of instrument validity. To recover the target param-
eter τ , it thus suffices to subtract η from the reduced-form regression coefficient λ,

τ =
λ− η
θ

. (124)

Inference for the above estimand can be done in numerous ways. At a given choice of η, one could
simply subtract the postulated bias from the reduced form estimate; similarly, confidence intervals
can be obtained using the delta-method. Another popular, and computationally simpler alternative
is to construct an auxiliary outcome Yη := Y − ηZ, and then proceed with any of the estimation
methods discussed here (e.g, 2SLS or Anderson-Rubin regression) using the auxiliary variable Yη
instead of Y .

Applying this approach to our running example we reach the correct, but perhaps trivial con-
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clusion that, in order to bring the causal effect estimate to zero (τ = 0), all of the reduced-form
estimate (4.2%) must be due to the effects of proximity to college on income, not through its ef-
fect on years of schooling, i.e. η = 4.2%. Other approaches, although different in details, can be
understood in similar terms. For instance, starting from a potential outcomes framework, Wang
et al. (2018) obtains a similar sensitivity model as Equation 123, and derive the distribution of the
Anderson-Rubin statistic for a given postulated value of η.

In contexts where researchers can make direct plausibility judgments about the coefficient η,
these approaches offer a simple and useful sensitivity analysis. In many cases, however, such as
in our running example, violations of instrument validity arise due to many possible confounding
variables acting in concert, such as family wealth, high school quality, and regional indicators. How
can we reason whether all these variables are strong enough to bring about an η ≈ 4.2%? The OVB
approach we present here change the focus from η to the omitted variables W . That is, instead of
asking for direct judgments about η, the OVB approach reveals what one must believe about the
maximum explanatory power of such omitted variables in order for them to be problematic. Here W
consists of the necessary set of variables to block both confounding between the instrument and the
outcome, as well as blocking paths from the instrument to the outcome, not through the treatment
(e.g, see Figure 4).

Finally, it is worth mentioning that these two approaches are not necessarily mutually exclusive.
To illustrate, suppose we have a structural model

Yi = τDi + ηZi + γW + εi (125)

with cov(Zi, εi) = 0. Here suppose η now effectively stands for the direct effect of Z on Y , not through
D nor W . If plausibility judgments on the direct effect of Z are available, we can leverage such
knowledge by first subtracting this off and then employing all OVB-based tools we have presented
in this paper to perform sensitivity analysis with respect to the remaining bias due to W .

F Supplementary Tables and Figures
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Figure 4: Causal diagrams illustrating traditional IV assumptions. Directed arrows, such as X → Y ,
denote a possible direct causal effect of X on Y . Bidirected arrows, such as D ↔ Y , stand for latent
common causes between D and Y . In Figure 4a, X is sufficient for rendering Z a valid instrumental
variable. In Figures 4b and 4c, however, W is also needed to render Z a valid IV, either because
it confounds the instrument-outcome relationship (Fig. 4b) or because it is a side-effect of the
instrument affecting the outcome other than through its effect of on the treatment (Fig. 4c). In
practice, all these violations will be happening simultaneously.
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Dependent variable:

Education Earnings (log)

FS RF OLS IV

(1) (2) (3) (4)

Proximity 0.320∗∗∗ 0.042∗∗

(0.088) (0.018)

Education 0.075∗∗∗ 0.132∗∗

(0.003) (0.055)

Black −0.936∗∗∗ −0.270∗∗∗ −0.199∗∗∗ −0.147∗∗∗

(0.094) (0.019) (0.018) (0.054)

SMSA 0.402∗∗∗ 0.165∗∗∗ 0.136∗∗∗ 0.112∗∗∗

(0.105) (0.022) (0.020) (0.032)

Other covariates yes yes yes yes

Observations 3,010 3,010 3,010 3,010
R2 0.477 0.195 0.300 0.238

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5: Results of Card (1993). Columns show estimates and standard errors (in parenthesis) of
the First Stage (FS), Reduced Form (RF), Ordinary Least Squares (OLS) and Two-Stage Least
Squares (IV). Black is an indicator of race; SMSA an indicator for whether the individual lived
in a metropolitan area. Following Card (1993), other covariates include age, regional indicators,
experience and experience squared.
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