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Abstract

We extend the omitted variable bias framework with a suite of tools for sensitivity analysis
in regression models that: (i) does not require assumptions on the functional form of the
treatment assignment mechanism nor on the distribution of the unobserved confounders;
(ii) naturally handles multiple confounders, possibly acting non-linearly; (iii) exploits
expert knowledge to bound sensitivity parameters; and, (iv) can be easily computed
using only standard regression results. In particular, we introduce two novel sensitiv-
ity measures suited for routine reporting. The robustness value describes the minimum
strength of association unobserved confounding would need to have, both with the treat-
ment and with the outcome, to change the research conclusions. The partial R2 of the
treatment with the outcome shows how strongly confounders explaining all the residual
outcome variation would have to be associated with the treatment to eliminate the esti-
mated effect. Next, we offer graphical tools for elaborating on problematic confounders,
examining the sensitivity of point estimates, t-values, as well as “extreme scenarios”.
Finally, we describe problems with a common “benchmarking” practice and introduce a
novel procedure to formally bound the strength of confounders based on comparison to
observed covariates. We apply these methods to a running example that estimates the
effect of exposure to violence on attitudes toward peace.
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1 Introduction

Observational research often seeks to estimate causal effects under a “no unobserved confounding” or
“ignorability” (conditional on observables) assumption (see e.g. Rosenbaum and Rubin 1983b; Pearl
2009; Imbens and Rubin 2015). When making causal claims from observational data, investigators
marshal what evidence they can to argue that their result is not due to confounding. In “natural” and
“quasi”-experiments, this often includes a qualitative account for why the treatment assignment is
“as-if” random conditional on a set of key characteristics (see e.g. Angrist and Pischke 2008; Dunning
2012). Investigators seeking to make causal claims from observational data are also instructed to
show “balance tests” and “placebo tests”. While, in some cases, null findings on these tests may
be consistent with the claim of no unobserved confounders, they are certainly not dispositive: it
is unobserved variables that we worry may be both “imbalanced” and related to the outcome in
problematic ways. Fundamentally, causal inference always require assumptions that are unverifiable
from the data (Pearl 2009).

Thus, in addition to balance and placebo tests, investigators are advised to conduct “sensitivity
analyses” examining how fragile a result is against the possibility of unobserved confounding.1 In
general, such analyses entail two components: (1) describing the type of unobserved confounders—
parameterized by their relation to the treatment assignment, the outcome, or both—that would
substantively change our conclusions about the estimated causal effect, and (2) assisting the investi-
gator in assessing the plausibility that such problematic confounding might exist, which necessarily
depends upon the research design and expert knowledge regarding the data generating process. A
variety of sensitivity analyses have been proposed, dating back to Cornfield et al. (1959), with more
recent contributions including Rosenbaum and Rubin (1983a); Robins (1999); Frank (2000); Rosen-
baum (2002); Imbens (2003); Brumback et al. (2004); Frank et al. (2008); Hosman et al. (2010); Imai
et al. (2010); Vanderweele and Arah (2011); Blackwell (2013); Frank et al. (2013); Carnegie et al.
(2016b); Dorie et al. (2016); Middleton et al. (2016); Oster (2017), and Franks et al. (2019).

Yet, such sensitivity analyses remain underutilized.2 We argue that a number of factors con-
tribute to this reluctant uptake. One is the complicated nature and strong assumptions many of
these methods impose, sometimes involving restrictions on or even a complete description of the na-
ture of the confounder. A second reason is that, while training, convention and convenience dictate
that users routinely report “regression tables” (or perhaps coefficient plots) to convey the results
of a regression, we lack readily available quantities that aid in understanding and communicating
how sensitive our results are to potential unobserved confounding. Third, and most fundamentally,
connecting the results of a formal sensitivity analysis to a cogent argument about what types of
confounders may exist in one’s research project is often difficult, particularly with research designs
that do not hinge on a credible argument regarding the (conditionally) “ignorable”, “exogeneous”,
or “as-if random” nature of the treatment assignment. To complicate things, some of the solutions
offered by the literature can lead users to erroneous conclusions (see Section 6 for discussion).

In this paper we show how the familiar omitted variable bias (OVB) framework can be extended
to address these challenges. We develop a suite of sensitivity analysis tools that do not require
assumptions on the functional form of the treatment assignment mechanism nor on the distribution

1Researchers may also wish to examine sensitivity to the choice of observed covariates, see Leamer (1983 2016).
2In political science, out of 164 quantitative papers in the top three general interest publications (American Political

Science Review, American Journal of Political Science, and Journal of Politics) for 2017, 64 papers clearly described a
causal identification strategy other than a randomized experiment. Of these only 4 (6.25%) employed a formal sensi-
tivity analyses beyond trying various specifications. In economics, Oster (2014) reports that most of non-experimental
empirical papers utilized only informal robustness tests based on coefficient stability in the face of adding or dropping
covariates. See also Chen and Pearl (2015).
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of the unobserved confounder, and can be used to assess the sensitivity to multiple confounders,
whether they influence the treatment and outcome linearly or not.

We first introduce two novel measures of the sensitivity of linear regression coefficients: (i) the
“robustness value” (RV), which provides a convenient reference point to assess the overall robustness
of a coefficient to unobserved confounding. If the confounders’ association to the treatment and to
the outcome (measured in terms of partial R2) are both assumed to be less than the robustness
value, then such confounders cannot “explain away” the observed effect. And, (ii) the proportion of
variation in the outcome explained uniquely by the treatment, R2

Y∼D|X , which reveals how strongly

counfounders that explain 100% of the residual variance of the outcome would have to be associated
with the treatment in order to eliminate the effect. Both measures can be easily computed from
standard regression output: one needs only the estimate’s t-value and the degrees of freedom. To
advance standard practice across a variety of disciplines, we propose routinely reporting the RV and
R2
Y∼D|X in regression tables.

Next, we offer graphical tools that investigators can use to refine their sensitivity analyses. The
first is close in spirit to the proposal of Imbens (2003)—a bivariate sensitivity contour plot, param-
eterizing the confounder in terms of partial R2 values. However, contrary to Imbens’ maximum
likelihood approach, the OVB-based approach makes the underlying analysis simpler to understand,
easier to compute, and more general. It side-steps assumptions on the functional form of the treat-
ment assignment and on the distribution of the (possibly multiple, non-linear) confounders, and it
easily extends contour plots to assess the sensitivity of t-values, p-values, or confidence intervals.
This enables users to examine the types of confounders that would alter their inferential conclusions,
not just point estimates. The second is an “extreme-scenario” sensitivity plot, in which investiga-
tors make conservative assumptions about the portion of otherwise unexplainend variance in the
outcome that is due to confounders. One can then see how strongly such confounders would need
to be associated with the treatment to be problematic. In the “worst-case” of these scenarios, the
investigator assumes all unexplained variation in the outcome may be due to a confounder.

Finally, we introduce a novel bounding procedure that aids researchers in judging which con-
founders are plausible or could be ruled out, using the observed data in combination with expert
knowledge. While prior work (Frank 2000; Imbens 2003; Hosman et al. 2010; Blackwell 2013; Dorie
et al. 2016; Carnegie et al. 2016b; Middleton et al. 2016; Hong et al. 2018) has suggested an infor-
mal practice of benchmarking the unobserved confounding by comparison to unadjusted statistics
of observables, we show that this practice can generate misleading conclusions due to the effects of
confounding itself, even if the confounder is assumed to be independent of the covariate(s) used for
benchmarking. Instead, our approach formally bounds the strength of unobserved confounding with
the same strength (or a multiple thereof) as a chosen observable or group of observables. These
bounds are tight and may be especially useful when investigators can credibly argue to have mea-
sured the most important determinants (in terms of variance explained) of the treatment assignment
or of the outcome.

In what follows, Section 2 describes the running example that will be used to illustrate the
tools throughout the text—a study of the effect of violence on attitudes toward peace in Darfur,
Sudan. Section 3 introduces the traditional OVB framework, how it can be used for a first approach
to sensitivity analysis, and some of its shortcomings. Next, Section 4 shows how to extend the
traditional OVB with the partial R2 parameterization and Section 5 demonstrates how these results
lead to a rich set of tools for sensitivity analysis. We conclude by discussing how our proposal
seeks to increase the use of sensitivity analyses in practice, how it compares to existing procedures,
and highlighting important caveats when interpreting sensitivity results. Open-source software for
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R implements the methods presented here.3

2 Running example

In this section we briefly introduce the applied example used throughout the paper.4 This serves
as a background to illustrate how the tools developed here can be applied to address problems
that commonly arise in observational research. We emphasize that the information produced by a
sensitivity analysis is useful to the extent that researchers can wield domain knowledge about the
data generating process to rule out the types of confounders shown to be problematic. Thus, a real
world example helps to illustrate how such knowledge could be employed.

2.1 Exposure to violence in Darfur

In Sudan’s western region of Darfur, a horrific campaign of violence against civilians began in
2003, sustaining high levels of violence through 2004, and killing an estimated 200,000 (Flint and
de Waal 2008). It was deemed genocide by then Secretary of State Colin Powell, and has resulted
in indictments of alleged genocide, war crimes, and crimes against humanity in the International
Criminal Court.

In the current case, we are interested in learning how being physically harmed during attacks
on one’s village changed individual attitudes towards peace. Clearly, we cannot randomize who is
exposed to such violence. However, the means by which violence was distributed provide a tragic
natural experiment. Violence against civilians during this time included both aerial bombardments
by government aircraft, and attacks by a pro-government militia called the Janjaweed. While some
villages were singled out for more or less violence, within a given village violence was arguably
indiscriminate. This argument is supported by reports such as

The government came with Antonovs, and targeted everything that moved. They made no
distinction between the civilians and rebel groups. If it moved, it was bombed. It is the same
thing, whether there are rebel groups (present) or not...The government bombs from the sky and
the Janjaweed sweeps through and burns everything and loots the animals and spoils everything
that they cannot take5

One can further argue that attacks were indiscriminate within village on the basis that the
violence promoted by the government was mainly used to drive people out rather than target indi-
viduals. Within village, the bombing was crude and the attackers had almost no information about
who they would target, with one major exception: while both men and women were often injured
or killed, women were targeted for widespread sexual assault and rape by the Janjaweed.

With this in mind, an investigator might claim that village and gender are sufficient for control
of confounding and estimate the linear model,

PeaceIndex = τ̂resDirectHarm + β̂f,resFemale + Villageβ̂v,res +Xβ̂res + ε̂res (1)

where PeaceIndex is an index measuring individual attitudes towards peace, DirectHarm a dummy
variable indicating whether an individual was reportedly injured or maimed during such an attack,

3R package sensemakr (Cinelli and Hazlett 2019) available on CRAN: https://cran.r-project.org/package=

sensemakr. Shiny App available on: https://carloscinelli.shinyapps.io/robustness_value/.
4We only describe the most relevant details, further information is available in Hazlett (2019).
5Transcript from interview taken by Darfurian Voices team. Interview code 03072009 118 cf2009008.
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Female is a fixed effect for being female, and Village is a matrix of village fixed effects. Other
pre-treatment covariates are included through the matrix X, such as: age, whether they were a
farmer, herder, merchant or trader, their household size and whether or not they voted in the past.
The results of this regression show that, on average, exposure to violence (DirectHarm) is associated
with more pro-peace attitudes on PeaceIndex.

Despite these arguments, not all investigators may agree with the assumption of no unobserved
confounders. Consider, for example, a fellow researcher who argues that, although bombings were
impossible to target finely, perhaps those in the center of the village were more often harmed than
those on the periphery. And might not those nearer the center of each village also have different
types of attitudes towards peace, on average? This suggests that the author ought to have instead
run the model,

PeaceIndex = τ̂DirectHarm + β̂fFemale + Villageβ̂v +Xβ̂ + γ̂Center + ε̂full (2)

That is, our earlier estimate τ̂res would differ from our target quantity τ̂ . But how badly? How
“strong” would a confounder like Center need to be to change our research conclusions? A simple
violation of unconfoundedness such as this one can be handled in a relatively straightforward manner
by the traditional OVB framework, as we will see in Section 3.

However, other skeptical researchers may question the claim that violence was conditionally indis-
criminate with more elaborate stories, worrying that unobserved factors such as Wealth or Political
Attitudes remain as confounders, perhaps even acting through non-linear functions such as an in-
teraction of these two. Additionally, we may also have domain knowledge about the determinants
of the outcome or the treatment assignment that could be used to limit arguments about potential
confounding. For example, considering the nature of the attacks and the special role that gender
played, one may argue that, within village, confounders are not likely to be as strongly associated
with the treatment as the observed covariate Female.

How strong would these confounders need to be (acting as a group, possibly with non-linearities)
to change our conclusions? And how could we codify and leverage our beliefs about the relative im-
portance of Female to bound the plausible strength of unobserved confounders? In Sections 4 and 5,
we show how extending the traditional OVB framework provides answers to such questions.

3 Sensitivity in an Omitted Variable Bias Framework

The “omitted variable bias” (OVB) formula is an important part of the mechanics of linear regres-
sion models and describes how the inclusion of an omitted covariate changes a coefficient estimate
of interest. In this section, we review the traditional OVB approach, and illustrate its use as a
simple tool for sensitivity analysis through bivariate contour plots showing how the effect estimate
would vary depending upon hypothetical strengths of the confounder. This serves not only as an
introduction to the method, but also to highlight limitations we will address in the following sections.

3.1 The traditional Omitted Variable Bias

Suppose an investigator wishes to run a linear regression model of an outcome Y on a treatment D,
controlling for a set of covariates given by X and Z, as in

Y = τ̂D +Xβ̂ + γ̂Z + ε̂full (3)
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where Y is an (n × 1) vector containing the outcome of interest for each of the n observations and
D is an (n × 1) treatment variable (which may be continuous or binary); X is an (n × p) matrix
of observed (pre-treatment) covariates including the constant; and Z is a single (n × 1) unobserved
covariate (we allow a multivariate version of Z in Section 4.5). However, since Z is unobserved, the
investigator is forced instead to estimate a restricted model,

Y = τ̂resD +Xβ̂res + ε̂res (4)

where τ̂res, β̂res are the coefficient estimates of the restricted OLS with only D and X, omitting Z,
and ε̂res its corresponding residual.

How does the observed estimate τ̂res compare to the desired estimate, τ̂? Let us define as b̂ias

the difference between these estimates, b̂ias := τ̂res − τ̂ , where the hat, (̂·), clarifies that this
quantity is a difference between sample estimates, not the difference between the expectation of a
sample estimate and a population value. Using the Frisch-Waugh-Lovell (FWL) theorem (Frisch
and Waugh 1933; Lovell 1963 2008) to “partial out” the observed covariates X, the classic omitted
variable bias solution is

τ̂res =
cov(D⊥X , Y ⊥X)

var(D⊥X)

=
cov(D⊥X , τ̂D⊥X + γ̂Z⊥X)

var(D⊥X)

= τ̂ + γ̂

(
cov(D⊥X , Z⊥X)

var(D⊥X)

)
= τ̂ + γ̂δ̂ (5)

where cov(·) and var(·) denote the sample covariance and variance; Y ⊥X , D⊥X and Z⊥X are
the variables Y , D and Z after removing the components linearly explained by X and we define

δ̂ := cov(D⊥X ,Z⊥X)
var(D⊥X)

. We then have

b̂ias = γ̂δ̂ (6)

While elementary, the OVB formula in Equation 6 provides the key intuitions as well as a formulaic
basis for a simple sensitivity analysis, letting us assess how the omission of covariates we wished
to have controlled for could affect our inferences. Note that it holds whether or not Equation 3
has a causal meaning. In applied settings, however, one is typically interested in cases where the
investigator has determined that the full regression, controlling for both X and the unobserved
variable Z, would have identified the causal effect of D on Y ; thus, hereafter we will treat Z as
an unobserved “confounder” and continue the discussion as if the estimate τ̂ , obtained with the
inclusion of Z, is the desired target quantity.6

6Conditions that endow regression estimates with causal meaning are extensively discussed in the literature: iden-
tification assumptions can be articulated in graphical terms, such as postulating a structural causal model in which
{X, Z} satisfy the backdoor criterion for identifying the causal effect of D on Y (Pearl 2009); or, equivalently, in
counterfactual notation, stating that the treatment assignment D is conditionally ignorable given {X, Z}, that is
Yd ⊥⊥ D|X, Z, where Yd denotes the potential outcome of Y when D is set to d (see Pearl 2009; Angrist and Pischke
2008; Imbens and Rubin 2015). We further note the effect of D on Y may be non-linear, in which case a regression
coefficient may be an incomplete summary of the causal effect (Angrist and Pischke 2008). Finally, indiscriminate
inclusion of covariates can induce or amplify bias (see Pearl 2011; Ding and Miratrix 2015; Middleton et al. 2016;
Steiner and Kim 2016 for related discussions). Here we assume the researcher is interested in the estimates one would
obtain from running the regression in Equation 3, controlling for X and Z.
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3.2 Making sense of the traditional OVB

One virtue of the OVB formula is its interpretability. The quantity γ̂ describes the difference in
the linear expectation of the outcome, when comparing individuals that differ by one unit on the
confounder, but have the same treatment assignment status as well as the same value for all remaining
covariates. In broader terms, γ̂ describes how looking at different subgroups of the unobserved
confounder “impacts” our best linear prediction of the outcome.7

By analogy, it would be tempting to think of δ̂ as the estimated marginal “impact” of the
confounder on the treatment. However, causal interpretation aside, this is incorrect because it refers
instead to the coefficient of the reverse regression, Z = δ̂D + Xψ̂ + ε̂Z , and not the regression
of the treatment D on Z, and X. That is, δ̂ gives the difference in the linear expectation of the
confounder, when comparing individuals with the same values for the covariates, but differing by
one unit on the treatment. This quantity will be familiar to empirical researchers who have used
quasi-experiments in which the treatment is believed to be randomized only conditional on certain
covariates X. In that case we may then check for “balance” on other (pre-treatment) observables
once conditioning is complete. Hence, we can think of δ̂ as the (conditional) imbalance of the
confounder with respect to the treatment—or simply “imbalance”.

Thus, a useful mnemonic is that the omitted variable bias can be summarized as the unobserved
confounder’s “impact times its imbalance”. Note that the imbalance component is quite general:
whatever the true functional form dictating E[Z|D,X] (or the treatment assignment mechanism),
the only way in which Z’s relationship to D enters the bias is captured by its “linear imbalance”,
parameterized by δ̂. In other words, the linear regression of Z on D and X need not reflect the
correct expected value of Z—rather it serves to capture the aspects of the relationship between Z
and D that affects the bias.

3.3 Using the traditional OVB for sensitivity analysis

If we know the signs of the partial correlations between the confounder with the treatment and
the outcome (the same as the signs of γ̂ and δ̂) we can argue whether our estimate is likely to be
underestimating or overestimating the quantity of interest. Arguments using correlational direction
is common practice in econometrics work.8 Often, though, discussing possible direction of the
bias is not possible or not sufficient, and magnitude must be considered. How strong would the
confounder(s) have to be to change the estimates in such a way to affect the main conclusions of a
study?

7While a causal interpretation here is tempting, whether this difference in the distribution of the outcome within
strata of the confounder can be attributed to a direct causal effect of the former on the latter depends on structural
assumptions. Suppose, for example, the “true” outcome model is assumed to be a linear structural equation where
strict exogeneity holds, i.e., Y = τD+Xβ+γZ+ε and E[ε|D,X, Z] = 0. Then, γ̂ could be interpreted as an estimate
of the direct causal impact of a unit change of the confounder on the expected value of the outcome Y , holding the
other covariates fixed. In many scenarios, however, this is unrealistic—since the researcher’s goal is to estimate the
causal effect of D on Y , usually Z is required only to, along with X, block the back-door paths from D to Y (Pearl
2009), or equivalently, make the treatment assignment conditionally ignorable. In this case, γ̂ could reflect not only
its causal effect on Y (if it has any) but also other spurious associations not eliminated by standard assumptions.
Heuristically, however, referring to γ̂ as the marginal “impact” of the confounder on the outcome is useful, as long as
the reader keeps in mind that it is an associational quantity with causal meaning only under certain circumstances.

8e.g. “Using a similar omitted-variables-type argument, we note that even if there are other confounders that we
haven’t controlled for, those that are positively correlated with private school attendance are likely to be positively
correlated with earnings as well. Even if these variables remain omitted, their omission leads the estimates computed
with the variables at hand to overestimate the private school premium.” (Angrist and Pischke 2017, p.8-9)
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Sensitivity contour plots

A first approach to investigate the sensitivity of our estimate can be summarized by a two-dimensional
plot of bias contours parameterized by the two terms γ̂ and δ̂. Each pair of hypothesized “impact”
and “imbalance” parameters corresponds to a certain level of bias (their product), but given an
initial treatment effect estimate τ̂res, we can also relabel the bias levels in terms of the “adjusted”
effect estimate, i.e τ̂ = τ̂res − γ̂δ̂, the estimate from the OLS regression we wish we had run, if we
had included a confounder with the hypothesized level of impact and imbalance.

In our running example, a specific confounder we wish we had controlled for is a binary indicator
of whether the respondent lived in the center or in the periphery of the village. How strong would
this specific confounder have to be in order for its inclusion to substantially affect our conclusions?
Figure 1 shows the plot of adjusted estimates for several hypothetical values of impact and imbalance
of the confounder Center.

Imbalance of Center/Periphery
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Figure 1: Sensitivity contours of the point estimate—traditional OVB

Hypothetical values for the imbalance of the confounder lie on the horizontal axis. In this
particular case, they indicate how those who were harmed are hypothesized to differ from those who
were not harmed in terms of the proportion of people living in the center of the village. Values for
the hypothetical impact of the confounder on the outcome lie on the vertical axis, representing how
attitudes towards peace differ on average for people living in the center versus those in the periphery
of the village, within strata of other covariates. The contour lines of the plot give the adjusted
treatment effect at hypothesized values of the impact and imbalance parameters. They show the
exact estimate one would have obtained by running the full regression including a confounder with
those hypothetical sensitivity parameters. No other information is required to know how such a
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confounder would influence the result. Notice that here, and throughout the paper, we parameterize
the bias in a way that it hurts our preferred hypothesis by reducing the absolute effect size.9

This plot explicitly reveals the type of prior knowledge one needs to have in order to be able to
rule out problematic confounders. As an example, imagine the confounder Center has a conditional
imbalance as high as 0.25—that is, having controlled for the observed covariates, those who were
physically injured were also 25 percentage points more likely to live in the center of the village than
those who were not. With such an imbalance, the plot reveals that the impact of living in the center
on the outcome (Peace Index) would have to be over 0.40 in order to bring down the estimated effect
of DirectHarm to zero.

Determining whether this is good or bad news remains difficult and requires contextual knowledge
about the process that generated the data. For instance, one could argue that, given the relatively
homogeneous nature of these small villages and that their centers are generally not markedly different
in composition than the peripheries, it is hard to believe that being in the center was associated with
a 0.40 higher expected score on Peace Index (which varies only from 0 to 1). Regardless of whether
the investigator can make a clear argument that rules out such confounders, the virtue of sensitivity
analysis is that it moves the conversation from one where the investigator seeks to defend “perfect
identification” and the critic points out potential confounders, to one where details can be given and
discussed about the degree of confounding that would be problematic.

Shortcomings of the traditional OVB

The traditional OVB has some benefits: as shown, with sound substantive knowledge about the
problem, it is a straightforward exercise. But it also has shortcomings. In the previous example,
Center was a convenient choice of confounder because it is a binary variable, and the units of measure
attached to “impact” and “imbalance” are thus easy to understand as changes in proportions. This
is not in general the case. Imagine contemplating confounders such as Political Attitudes: in what
scale should we measure this? A doubling of that scale would halve the required “impact” and
double the required “imbalance”. A possible solution is standardizing the coefficients, but this does
not help if the goal is to assess the sensitivity of the causal parameter in its original scale.

Furthermore, the traditional OVB, be it standardized or not, does not generalize easily to mul-
tiple confounders: how should we assess the effect of confounders Political Attitudes and Wealth,
acting together, perhaps with complex non-linearities? Or, more generally, how should we consider
all the other unnamed confounders acting together? Can we benchmark all these confounders against
Female? Finally, how can we obtain the sensitivity of not only the point estimate, but also the stan-
dard errors, so that we could examine t-values, p-values or confidence intervals under hypothetical
confounders?

4 OVB with the partial R2 parameterization

We now consider a reparameterization of the OVB formula in terms of partial R2 values. Our
goal is to replace the sensitivity parameters γ̂ and δ̂ with a pair of parameters that uses an R2

measure to assess the strength of association between the confounder and the treatment and between
the confounder and the outcome, both assuming the remaining covariates X have been accounted

9Investigators may also argue that accounting for omitted variable bias would increase the effect size, in the sense
that the current estimate is conservative. Our tools apply to these cases as well, the arguments would just work in
the opposite direction. For simplicity of exposition, in the paper we focus on the case where accounting for omitted
variable bias reduces the effect size.
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for. The partial R2 parameterization is scale-free and it further enables us to construct a number
of useful analyses, including: (i) assessing the sensitivity of an estimate to any number or even
all confounders acting together, possibly non-linearly; (ii) using the same framework to assess the
sensitivity of point estimates as well as t-values and confidence intervals; (iii) assessing the sensitivity
to extreme-scenarios in which all or a big portion of the unexplained variance of the outcome is due to
confounding; (iv) applying contextual information about the research design to bound the strength
of the confounders; and (v) presenting these sensitivity results concisely for easy routine reporting,
as well as providing visual tools for finer grained analysis.

4.1 Reparameterizing the bias in terms of partial R2

Let R2
Z∼D denote the (sample) R2 of regressing Z on D. Recall that for OLS the following holds,

R2
Z∼D = var(Ẑ)

var(Z) = 1 − var(Z⊥D)
var(Z) = cor(Z, Ẑ)2 = cor(Z,D)2, where Ẑ are the fitted values given by

regressing Z on D. Notice the R2 is symmetric, that is, it is invariant to whether one uses the
“forward” or the “reverse” regression since R2

Z∼D = cor(Z,D)2 = cor(D,Z)2 = R2
D∼Z . Extending

this to the case with covariates X, we denote the partial R2 from regressing Z on D after con-

trolling for X as R2
Z∼D|X . This has the same useful symmetry, with R2

Z∼D|X = 1 − var(Z⊥X,D)
var(Z⊥X)

=

cor(Z⊥X , D⊥X)2 = cor(D⊥X , Z⊥X)2 = R2
D∼Z|X .

We are now ready to express the bias in terms of partial R2. First, by the FWL theorem,

b̂ias = δ̂γ̂

=

(
cov(D⊥X , Z⊥X)

var(D⊥X)

)(
cov(Y ⊥X,D, Z⊥X,D)

var(Z⊥X,D)

)
=

(
cor(D⊥X , Z⊥X)sd(Z⊥X)

sd(D⊥X)

)(
cor(Y ⊥X,D, Z⊥X,D)sd(Y ⊥X,D)

sd(Z⊥X,D)

)

=

cor(Y ⊥X,D, Z⊥X,D)cor(D⊥X , Z⊥X)
sd(Z⊥X,D)
sd(Z⊥X)

(sd(Y ⊥X,D)

sd(D⊥X)

)
(7)

Noting that cor(Y ⊥X,D, Z⊥X,D)2 = R2
Y∼Z|X,D, that cor(Z⊥X , D⊥X)2 = R2

D∼Z|X , and that var(Z⊥X,D)
var(Z⊥X)

=

1−R2
Z∼D|X = 1−R2

D∼Z|X , we can write 7 as

|b̂ias| =

√√√√R2
Y∼Z|D,X R2

D∼Z|X

1−R2
D∼Z|X

(
sd(Y ⊥X,D)

sd(D⊥X)

)
. (8)

Equation 8 rewrites the OVB formula in terms that more conveniently rely on partial R2 measures
of association rather than raw regression coefficients. Investigators may be interested in how con-
founders alter inference as well, so we also examine the standard error. Let df denote the regression’s
degrees of freedom (for the restricted regression actually run). Noting that

ŝe(τ̂res) =
sd(Y ⊥X,D)

sd(D⊥X)

√
1

df
(9)

ŝe(τ̂) =
sd(Y ⊥X,D,Z)

sd(D⊥X,Z)

√
1

df− 1
, (10)
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whose ratio is

ŝe(τ̂)

ŝe(τ̂res)
=

(
sd(Y ⊥X,D,Z)

sd(Y ⊥X,D)

)(
sd(D⊥X)

sd(D⊥X,Z)

)√
df

df− 1
, (11)

we obtain the expression for the estimated standard error of τ̂

ŝe(τ̂) = ŝe(τ̂res)

√√√√1−R2
Y∼Z|D,X

1−R2
D∼Z|X

(
df

df− 1

)
. (12)

Moreover, with this we can further see the bias as

|b̂ias| = ŝe(τ̂res)

√√√√R2
Y∼Z|D,X R2

D∼Z|X

1−R2
D∼Z|X

(df). (13)

4.2 Making sense of the partial R2 parameterization

Equations 12 and 13 form the basis of the sensitivity exercises regarding both the point estimate and
the standard error, with sensitivity parameters in terms of R2

Y∼Z|D,X and R2
D∼Z|X . These formulae

are computationally convenient—the only data dependent parts are the standard error of τ̂res and
the regression’s degrees of freedom, which are already reported by most regression software. In this
section, we provide remarks that help making sense of these results, revealing their simplicity in
terms of regression anatomy. We also review some partial R2 identities that may prove useful when
reasoning about the sensitivity parameters.

Sensitivity of the point estimate

In the partial R2 parameterization, the relative bias,
∣∣∣ b̂iasτ̂res

∣∣∣, has a simple form:10

relative bias =

bias factor︷ ︸︸ ︷
|RY∼Z|D,X × fD∼Z|X |

|fY∼D|X |︸ ︷︷ ︸
partial f of D with Y

=
BF

|fY∼D|X |
. (14)

The numerator of the relative bias contains the partial Cohen’s f of the confounder with the treat-
ment, “amortized” by the partial correlation of that confounder with the outcome.11 Collectively
this numerator could be called the “bias factor” of the confounder, BF = |RY∼Z|D,X × fD∼Z|X |,
which is determined entirely by the two sensitivity parameters R2

Y∼Z|D,X and R2
D∼Z|X . To deter-

mine the size of the relative bias, this is compared to how much variation of the outcome is uniquely
explained by the treatment assignment, in the form of the partial Cohen’s f of the treatment with
the outcome. Computationally, fY∼D|X can be obtained by dividing the t-value of the treatment

coefficient by the square-root of the regression’s degrees of freedom—fY∼D|X = tτ̂res/
√

df. This
allows one to easily assess sensitivity to any confounder with a given pair of partial R2 values, see
Table 2 in Supplement D for an illustrating procedure.

10See Supplement A for details.
11Cohen’s f2 can be written as f2 = R2/(1−R2), so, for example, f2

D∼Z|X = R2
D∼Z|X/(1−R2

D∼Z|X).
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Equation 14 also reveals that, given a particular confounder (which will fix BF), the only property
needed to determine the robustness of a regression estimate against that confounder is the partial R2

of the treatment with the outcome (via fY∼D|X). This serves to reinforce the fact that robustness to
confounding is an identification problem, impervious to sample size considerations. While t-values
and p-values might be informative with respect to the statistical uncertainty (in a correctly specified
model), robustness to misspecification is determined by the share of variation of the outcome the
treatment uniquely explains.

A subtle but useful property of the partial R2 parameterization is that it reveals an asymmetry in
the role of the components of the bias factor. In the traditional OVB formulation, the bias is simply
a product of two terms with the same importance. The new formulation breaks this symmetry: the
effect of the partial R2 of the confounder with the outcome on the bias factor is bounded at one.
By contrast, the effect of the partial R2 of the confounder with the treatment on the bias factor is
unbounded (via fD∼Z|X). This allows us to consider extreme scenarios, in which we suppose the
confounder explains all of the left-out variation of the outcome, and see what happens as we vary
the partial R2 of the confounder with the treatment (Section 5.3).

Sensitivity of the variance

How the confounder affects the estimate of the variance has a straightforward interpretation as well.
The relative change in the variance, v̂ar(τ̂)

v̂ar(τ̂res)
, can be decomposed into three components,

relative change in variance =

VRF︷ ︸︸ ︷(
1−R2

Y∼Z|D,X

)( 1

1−R2
D∼Z|X

)
︸ ︷︷ ︸

VIF

change in df︷ ︸︸ ︷(
df

df− 1

)

= VRF×VIF× change in df. (15)

That is, including the confounder in the regression reduces the estimate of the variance of the
coefficient of D by reducing the residual variance of Y (variance reduction factor—VRF). On the
other hand, it raises the estimated variance of the coefficient via its partial correlation with the
treatment (the traditional variance inflation factor—VIF). Finally, the degrees of freedom must be
adjusted to formally recover the answer one would obtain from including the omitted variable. The
overall relative change of the estimated variance is simply the product of these three components.

Reasoning about R2
Y∼Z|D,X and R2

D∼Z|X

For simplicity of exposition, throughout the paper we reason in terms of the sensitivity parameters
R2
Y∼Z|D,X and R2

D∼Z|X directly. However, here we recall some identities of the partial R2 scale that
can aid interpretation depending upon what can best be reasoned about in a given applied setting.

First, as noted in Section 4.1, researchers accustomed to thinking about or evaluating the strength
of (partial) correlations can simply square those values to reason with the corresponding partial
R2s. Next, in some circumstances, researchers might prefer to reason about the relationship of the
unobserved confounder Z and the outcome Y without conditioning on the treatment assignment D.12

12For instance, since D will usually be a post-treatment variable with respect to Z, this can make the the association
of Y and Z conditional on D harder to interpret, especially when one wants to attach a causal meaning to the parameter
(Rosenbaum 1984). As argued in footnote 7, however, recall that a causal interpretation of the association of Z with
Y requires more assumptions than the ones usually invoked for the identification of the causal effect of D on Y .
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This can be done by noting that, for a choice of RY∼Z|X and RD∼Z|X , we can reconstruct RY∼Z|D,X
using the recursive definition of partial correlations,

RY∼Z|D,X =
RY∼Z|X −RY∼D|XRD∼Z|X√

1−R2
Y∼D|X

√
1−R2

D∼Z|X

. (16)

Therefore, if needed, one can reason directly about sensitivity parameters R2
Y∼Z|X and R2

D∼Z|X .
Finally, it may be beneficial to reason in terms of how much explanatory power is added by

including confounders. To this end, recall the partial R2’s are defined as,

R2
Y∼Z|D,X =

R2
Y∼D+X+Z −R2

Y∼D+X

1−R2
Y∼D+X

, R2
D∼Z|X =

R2
D∼X+Z −R2

D∼X
1−R2

D∼X
. (17)

That is, plausibility judgments about the partial R2 boil down to plausibility judgments about the
total (or added) explanatory power that one would have obtained in the treatment and the outcome
regressions, had the unobserved confounder Z been included. This may be particularly useful when
contemplating multiple confounders acting in concert (as we will discuss in Section 4.5), in which
case other parameterizations (such as simple correlations or regression coefficients) become unwieldy.

4.3 Sensitivity statistics for routine reporting

Detailed sensitivity analyses can be conducted using the previous results, as we will show in the
next section. However, widespread adoption of sensitivity analyses would benefit from simple mea-
sures that quickly describe the overall sensitivity of an estimate to unobserved confounding. These
measures serve two main purposes: (i) they can be routinely reported in standard regression tables,
making the discussion of sensitivity to unobserved confounding more accessible and standardized;
and, (ii) they can be easily computed from quantities found on a regression table, allowing readers
and reviewers to initiate the discussion about unobserved confounders when reading papers that did
not formally assess sensitivity.

The robustness value

The first quantity we propose is the robustness value (RV), which conveniently summarizes the types
of confounders that would problematically change the research conclusions. Consider a confounder
with equal association to the treatment and the outcome, i.e. R2

Y∼Z|X,D = R2
D∼Z|X = RVq. The RVq

describes how strong that association must be in order to reduce the estimated effect by (100× q)%.
By Equation 14 (see Supplement A),

RVq =
1

2

(√
f4q + 4f2q − f2q

)
(18)

where fq := q|fY∼D|X | is the partial Cohen’s f of the treatment with the outcome multiplied by
the proportion of reduction q on the treatment coefficient which would be deemed problematic.
Confounders that explain RVq% of the residual variance both of the treatment and the outcome are
sufficiently strong to change the point estimate in problematic ways, while confounders with neither
association greater than RVq% are not.

The RV thus offers an interpretable sensitivity measure that summarizes how robust the point
estimate is to unobserved confounding. A robustness value close to one means the treatment effect
can handle strong confounders explaining almost all residual variation of the treatment and the

12



outcome. On the other hand, a robustness value close to zero means that even very weak confounders
could eliminate the results. Note that the RV can be easily computed from any regression table,
recalling that fY∼D|X can be obtained by simply dividing the treatment coefficient t-value by

√
df.

With minor adjustment, robustness values can also be obtained for t-values, or lower and upper
bounds of confidence intervals. Let |t∗α,df−1| denote the t-value threshold for a t-test with significance

level of α and df − 1 degrees of freedom, and define f∗α,df−1 := |t∗α,df−1|/
√

df− 1. Now construct an
adjusted fq,α, accounting for both the proportion of reduction q of the point estimate and the
boundary below which statistical significance is lost at the level of α,

fq,α := fq − f∗α,df−1 (19)

If fq,α < 0, then the robustness value is zero. If fq,α > 0, then a confounder with a partial R2 of,

RVq,α =
1

2

(√
f4q,α + 4f2q,α − f2q,α

)
, (20)

both with the treatment and with the outcome is sufficiently strong to make the adjusted t-test not
reject the null hypothesis H0 : τ = (1− q)|τ̂res| at the α level (or, equivalently, to make the adjusted
1−α confidence interval include (1−q)|τ̂res|). When RVq,α > 1−1/f2q then, as with the RVq, we can
conclude that no confounder with both associations lower than RVq,α is able to overturn the conclu-
sion of such a test. In the rare cases when RVq,α ≤ 1− 1/f2q , setting RVq,α = (f2q − f∗2α,df−1)/(1 + f2q )

restores the property that no confounder weaker on both associations would change the conclusion.13

Note that, since we are considering sample uncertainty, RVq,α is a more conservative measure than
RVq. For a fixed |t∗α,df−1|, RVq,α converges to RVq when the sample size grows to infinity.

The R2
Y∼D|X as an extreme scenario analysis

The second measure we propose is the proportion of variation in the outcome uniquely explained by
the treatment—R2

Y∼D|X . Consider the following question: “if an extreme confounder explained all
the residual variance of the outcome, how strongly associated with the treatment would it need to
be in order to eliminate the estimated effect?” As it happens, the answer is precisely the R2

Y∼D|X .
Specifically, a confounder explaining all residual variance of the outcome implies RY∼Z|D,X = 1.

By Equation 14, to bring the estimated effect down to zero (relative bias = 1), this means |fD∼Z|X |
needs to equal |fY∼D|X |, which implies R2

D∼Z|X = R2
Y∼D|X . Thus, R2

Y∼D|X is not only the
determinant of the robustness of the treatment effect coefficient, but can also be interpreted as the
result of an “extreme scenario” sensitivity analysis.

4.4 Bounding the strength of the confounder using observed covariates

Arguably, the most difficult part of a sensitivity analysis is taking the description of a confounder that
would be problematic from the formal results, and reasoning about whether a confounder with such
strength plausibly exists in one’s study, given its design and the investigator’s contextual knowledge.
In this section, we introduce a novel bounding approach that can help alleviate this difficulty. The
rationale for the method is the realization that, while in some cases an investigator may not be able
make direct plausibility judgments about the strength of an unobserved confounder Z, she might still
have grounds to make judgements about its relative strength, for instance, claiming that Z cannot
possibly account for as much variation of the treatment assignment as some observed covariate X.

13This occurs when the variance reduction due to an increase in R2
Y∼Z|D,X dominates its effect on the bias. Such

cases are unlikely in practice, see Supplement A for details.
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How can we formally codify and leverage these claims regarding relative strength (or importance) of
covariates for sensitivity analysis?

Clearly, there is not a unique way to measure the relative strength of variables (Kruskal and
Majors 1989). For the task at hand, however, any proposal must meet the minimal criterion of solving
the correct identification problem—essentially, this means the chosen measure of relative strength
must be sufficient to identify (or bound) the bias, and a new function (or bound) in terms of that
measure must be derived (Cinelli et al. 2019). Previous work has proposed informal benchmarking
procedures that fail this minimal criterion and can generate misleading sensitivity analysis results,
even if researchers had correct knowledge about the relative strength of Z (Frank 2000; Imbens 2003;
Frank et al. 2008; Blackwell 2013; Dorie et al. 2016; Carnegie et al. 2016b; Middleton et al. 2016).
We elaborate on the pitfalls of this informal approach in Section 6.2 of the Discussion.

Additionally, simply obtaining a formal identification result is not enough for it to be useful
in applied settings—investigators must still be able to reason cogently about whether confounders
are “stronger” than observed covariates using the chosen measure of relative strength. Since this
depends on context, it is highly desirable to have a variety of measures for those relative comparisons
(allowing researchers to choose the ones that are best suited for a given analysis) and that those
measures have relevant interpretations (Kruskal and Majors 1989). An example of the risks entailed
by ignoring this requirement can be found in the coefficient of “proportional selection on observables”
advanced by Oster (2017), which will be discussed in Section 6.3.

With this in mind, here we offer three main alternatives to bound the strength of the unobserved
confounder, by judging: (i) how the total R2 of the confounder compares with the total R2 of a
group of observed covariates; (ii) how the partial R2 of the confounder compares with the partial R2

of a group of observed covariates, having taken into account the explanatory power of remaining
observed covariates; or, (iii) how the partial R2 of the confounder compares with the partial R2 of a
group of observed covariates, having taken into account the explanatory power of remaining observed
covariates and the treatment assignment. These are natural measures of relative importance for OLS,
and can be interpreted as comparisons of the consequences of dropping a (group of) variable(s) in
variance reduction or prediction error (Kruskal and Majors 1989).

The choice of bounding procedures one should use depends on which of these quantities the in-
vestigator prefers and can most soundly reason about in their own research. In our running example,
within a given village, one may argue that Female is the most important visible characteristic that
could be used for exposure to violence, and it likely explains more of the residual variation in target-
ing than could any unobserved confounder. For this reason (as well as simplicity of exposition) in
the main text we illustrate the use of the third type of bound, but we refer readers to Supplement B
for further discussion and derivations of the other two variants.14

Assume Z ⊥X, or, equivalently, consider only the part of Z not linearly explained by X. Now
suppose the researcher believes she has measured the key determinants of the outcome and treatment
assignment process, in the sense that the omitted variable cannot explain as much residual variance
(or cannot explain a large multiple of the variance) of D or Y in comparison to a observed covariate
Xj . More formally, define kD and kY as,

kD :=
R2
D∼Z|X−j

R2
D∼Xj |X−j

, kY :=
R2
Y∼Z|X−j ,D

R2
Y∼Xj |X−j ,D

. (21)

14Another reason we employ this type of bound in the main text is that it is most closely related to approaches
used by other sensitivity analyses to which we contrast our results. These include the informal benchmarks of Imbens
(2003) as well as the bounding proposal of Oster (2017), discussed in Section 6.
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Where X−j represents the vector of covariates X excluding Xj . That is, kD indexes how much
variance of the treatment assignment the confounder explains relative to how much Xj explains (after
controlling for the remaining covariates). To make things concrete, for example, if the researcher
believes the omission of Xj would result in a larger mean squared error of the treatment assignment
regression than the omission of Z, this equals the claim kD ≤ 1. The same reasoning applies to kY .

Given parameters kD and kY , we can rewrite the strength of the confounders as,

R2
D∼Z|X = kDf

2
D∼Xj |X−j , R2

Y∼Z|D,X ≤ η
2f2Y∼Xj |X−j ,D (22)

where η is a scalar which depends on kY , kD and R2
D∼Xj |X−j , (see Supplement B for details). These

equations allow us to investigate the maximum effect a confounder at most “k times” as strong as
a particular covariate Xj would have on the coefficient estimate. These results are also tight, in the
sense that we can always find a confounder that makes the second inequality an equality. Further,
certain values for kD and kY may be ruled out by the data (for instance, if R2

D∼Xj |X−j = 50% then

kD must be less than 1).
Our bounding exercises can be extended to any subset of the covariates. For instance, the

researcher can bound the effect of a confounder as strong as all covariates X or any subset thereof.
The method can also be extended to allow different subgroups of covariates to bound R2

D∼Z|X and

R2
Y∼Z|D,X— thus, if a group of covariates X1 is known to be the most important driver of selection

to treatment, and another group of covariates X2 is known to be the most important determinant
of the outcome, the researcher can exploit this fact.

4.5 Sensitivity to multiple confounders

The previous results let us assess the bias caused by a single confounder. Fortunately, they also
provide upper bounds in the case of multiple unobserved confounders.15 Allowing Z to be a set
(matrix) of confounders and γ̂ its coefficient vector, the full equation we wished we had estimated
becomes

Y = τ̂D +Xβ̂ +Zγ̂ + ε̂full. (23)

Now consider the single variable Z∗ = Zγ̂. The bias caused by omitting Z is the same as omitting
the linear combination Z∗, and one can think about the effect of multiple confounders in terms of
this single confounder. Estimating the regression with X and Z∗ instead of X and Z gives the same
results for τ̂ ,

Y = τ̂D +Xβ̂ + Z∗ + ε̂full. (24)

Accordingly, Z∗ has the same partial R2 with the outcome as the full set Z. However, the partial R2

of Z∗ with the treatment must be less than or equal to the partial R2 of Z with the treatment—this
follows simply because the choice of the linear combination γ̂ is the one the maximizes the R2 with
the outcome, and not with the treatment. Hence, the bias caused by a multivariate Z must be less
than or equal the bias computed using Equation 13.

As for the standard errors, we need simply to modify sensitivity Equation 12 to account for the
correct degrees of freedom (df − k instead of df − 1). From a practical point of view, however, we
note that further correction of the degrees of freedom might be an unnecessary formality—we are
performing a hypothetical exercise, and one can always imagine to have measured Z∗.

15See Hosman et al. (2010), Section 4.1, for an alternative proof.
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Finally, note the set of confounders Z is arbitrary, thus it accommodates nonlinear confounders
as well as misspecification of the functional form of the observed covariates X. To illustrate the
point, let Y = τ̂D + β̂X + γ̂1Z + γ̂2Z

2 + γ̂3(Z ×X) + γ̂4X
2 + ε̂full, and imagine the researcher did

not measure Z and did not consider that X could also enter the equation with a squared term. Now
just call Z = (Z1 = Z,Z2 = Z2, Z3 = Z ×X,Z4 = X2) and all the previous arguments follow.

5 Using the partial R2 parameterization for sensitivity analysis

Returning to our running example of violence in Darfur, we illustrate how these tools can be deployed
in an effort to answer the following questions: (i) How strong would a particular confounder (or group
of confounders) have to be to change our conclusions? (ii) In a worst case scenario, how vulnerable
is our result to many or all unobserved confounders acting together, possibly non-linearly? (iii) Are
the confounders that would alter our conclusions plausible, or at least how strong would they have
to be relative to observed covariates?

5.1 Proposed minimal reporting: Robustness Value, R2
Y∼D|X and Bounds

Table 1 illustrates the type of reporting we propose should accompany linear regression models used
for causal inference with observational data. Along with traditionally reported statistics, we propose
researchers present (i) the partial R2 of the treatment with the outcome, and (ii) the robustness
value, RV , both for where the point estimate and the confidence interval would cross zero (or another
meaningful reference value).16 Finally, in order to aid user judgment, we encourage researchers to
provide plausible bounds on the strength of the confounder. These may be based upon bounds
employing meaningful covariates determined by the research context and design (Section 4.4), or in
principle may be available from theory and previous literature.

Outcome: Peace Index

Treatment: Est. SE t-value R2
Y∼D|X RV RVα=0.05

Directly Harmed 0.097 0.023 4.18 2.2% 13.9% 7.6%

df = 783, Bound (Z as strong as Female): R2
Y∼Z|D,X = 12%, R2

D∼Z|X = 1%

Table 1: Proposed minimal reporting on sensitivity to unobserved confounders

For our running example of violence in Darfur, Table 1 shows an augmented regression table,
including the robustness value (RV ) of the Directly Harmed coefficient, 13.9%. This means that
unobserved confounders explaining at least 13.9% of the residual variance of both the treatment and
the outcome would explain away the estimated treatment effect. It also means that any confounder
explaining less than 13.9% of the residual variance of both the treatment and the outcome would
not be strong enough to bring down the estimated effect to zero. For cases where one association is
over 13.9% and the other is below, we conduct additional analyses illustrated in the next subsection.
Nevertheless, the RV still fully characterizes the robustness of the regression coefficient to unobserved
confounding—it provides a quick, meaningful reference point for understanding the minimal strength
of bias necessary to overturn the research conclusions.17

Adjusting for confounding may not bring the estimate to zero, but rather into a range where
it is no longer “statistically significant”. Therefore, the robustness value accounting for statistical

16For convenience, we refer to the RVq or RVq,α with q = 1 as simply the RV or RVα
17That is, any confounder with an equivalent bias factor of BF = RV /

√
1−RV .
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significance, RVα=0.05, is also shown in the table. For a significance level of 5%, the robustness value
goes down from 13.9% to 7.6%—that is, confounders would need to be only about half as strong to
make the estimate not “statistically significant”. Finally, the partial R2 of the treatment with the
outcome, R2

Y∼D|X , in Table 1 gives a sensitivity analysis for an extreme scenario: if confounders

explained 100% of the residual variance of the outcome, they would need to explain at least 2.2% of
the residual variance of the treatment to bring down the estimated effect to zero.

Confronted with those results, we now need to judge whether confounders with the strengths
revealed to be problematic are plausible. If one can claim to have measured the most important
covariates in explaining treatment and outcome variation, it is possible to bound the strength of
the confounder with the tools of Section 4.4 and judge where it falls relative to these quantities.
The lower right corner of Table 1 shows the strength of association that a confounder as strong as
Female would have: R2

Y∼Z|D,X = 12% and R2
D∼Z|X = 1%. As the robustness value is higher than

either quantity, the table readily reveals that such a confounder could not fully eliminate the point
estimate. In addition, since the bound for R2

D∼Z|X is less than R2
Y∼D|X = 2.2%, a “worst case

confounder” explaining all of the left-out variance of the outcome and as strongly associated with
the treatment as Female would not eliminate the estimated effect either.

Domain knowledge about how the treatment was assigned or regarding the main determinants
of the outcome is required to make any such comparisons meaningful. In our running example, a
reasonable argument can be made that gender is one of the most visually apparent characteristic of
an individual during the attacks, and that, within village, gender was potentially the most important
factor to explain targeting due to the high level of sexual violence. Thus, if one can argue that total
confounding as strongly associated with the treatment as Female is implausible, those bounding
results show it cannot completely account for the observed estimated effect.

These sensitivity exercises are exact when considering a single linear unobserved confounder and
are conservative for multiple unobserved confounders, possibly acting non-linearly—this includes the
explanatory power of all left out factors, even misspecification of the functional form of observed
covariates. It is worth pointing out that sensitivity to any arbitrary confounder with a given pair
of partial R2 values (R2

Y∼Z|D,X , R
2
D∼Z|X) can also be easily computed with the information on the

table, see example in Supplement D.

5.2 Sensitivity contour plots with partial R2: estimates and t-values

The next step is to refine the analysis with tools that visually demonstrate how confounders of differ-
ent types would affect point estimates and t-values, while showing where bounds on such confounders
would fall under different assumptions on how unobserved confounders compare to observables.18

Perhaps the first plot investigators would examine would be one similar to Figure 1, but now in
the partial R2 parameterization (Figure 2a). The horizontal axis describes the fraction of the residual
variation in the treatment (partial R2) explained by the confounder; the vertical axis describes the
fraction of the residual variation in the outcome explained by the confounder.19 The contours show
the adjusted estimate that would be obtained for an unobserved confounder (in the full model) with
the hypothesized values of the sensitivity parameters (assuming the direction of the effects hurts our
preferred hypothesis).

18Here we focus on the plots for point estimates and t-values, but note p-values can be obtained from the t-values,
and the confidence interval end-points by adjusting the estimate with the appropriate multiple of the standard-errors.

19As discussed in Section 4.2, axes could be transformed to show instead (i) the total R2 including the confounders
R2
Y∼D+X+Z and R2

D∼X+Z , (ii) the difference in the total R2 including the confounders, i.e., R2
Y∼D+X+Z −R2

Y∼D+X

and R2
D∼X+Z − R2

D∼X , (iii) the partial correlations (by simply taking the square-root), (iv) the partial R2 of the
confounder with the outcome not conditioning on the treatment, among other options that may aid interpretation.
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Figure 2: Sensitivity contour plots in the partial R2 scale with benchmark bounds

While the contour plot used in illustrating the traditional OVB approach focused on a specific
binary confounder—Center—the contour plot with the partial R2 parameterization allows us to
assess sensitivity to any confounder, irrespective of its unit of measure. Additionally, since the
sensitivity equations give an upper bound for the multivariate case, the same plot can be used
to assess the sensitivity to any group of confounders, here including non-linear terms, such as the
example of Political Attitudes and Wealth acting together. Notice that if we choose a contour of
interest (such as where the effect equals zero), and find the point with equal values on the horizontal
and vertical axes (i.e. where it crosses a 45-degree line), this correspond to the robustness value.
That is, the RV is a convenient, interpretable summary of a critical line of the contour plot.

Further, the bounding exercise results in points on the plot showing the bounds on the partial R2

of the unobserved confounder if it were k times “as strong” as the observed covariate Female. The
first point shows the bounds for a confounder (or group of confounders) as strong as Female, as was
also shown in Table 1. A second reference point shows the bounds for confounders twice as strong
as Female, and finally the last point bounds the strength of confounders three times as strong as
Female. The plot reveals that the sign of the point estimate is still relatively robust to confounding
with such strengths, although the magnitude would be reduced to 77%, 55% and 32% of the original
estimate, respectively.

Moving to inferential concerns, Figure 2b now shows the sensitivity of the t-value of the treatment
effect. As we move along the horizontal axis, not only the adjusted effect reduces, but we also get
larger standard-errors due to the variance inflation factor of the confounder. If we take the t-value of 2
as our reference (the usual approximate value for a 95% confidence interval), the plot reveals the
statistical significance of Directly Harmed is robust to a confounder as strong as, or twice as strong
as Female. However, whereas confounders three times as strong as Female would not erode the point
estimate to zero, we cannot guarantee the estimate would remain “statistically significant” at the
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5% level.
Altogether, these bounding exercises naturally lead to the questions: are such confounders plau-

sible? Do we think it possible that confounders might exist that are three times as strong as Female?
If so, what are they? While one may not have complete confidence in answering such questions, we
have moved the discussion from a qualitative argument about whether any confounding is possible
to a more disciplined, quantitative argument that entices researchers to think about possible threats
to their research design.

5.3 Sensitivity plots of extreme scenarios

Even with a good understanding of the treatment assignment mechanism, investigators may not
always be equipped to convincingly limit the association of the confounder with the outcome. In
such cases, exploring sensitivity analysis to extreme-scenarios is still an option. If we set R2

Y∼Z|D,X
to one or some other conservative value, how strongly would such a confounder need to be associated
with the treatment in order to problematically change our estimate? While in some cases this exercise
could reveal that confounders weakly related to the treatment would be sufficient to overturn the
estimated effect, survival to extreme scenarios may help investigators demonstrate the robustness of
their results.
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Figure 3: Sensitivity analysis to extreme scenarios

Applying this to our running example, results are shown in Figure 3. The solid curve represents
the case where unobserved confounder(s) explain all the left-out residual variance of the outcome.
On the vertical axis we have the adjusted treatment effect, starting from the case with no bias and
going down as the bias increases, reducing the estimate; the horizontal axis shows the partial R2

of the confounder with the treatment. In this extreme scenario, as we have seen, R2
D∼Z|X would

need to be exactly the same as the partial R2 of the treatment with the outcome to bring down
the estimated effect to zero—that is, it would need to be at least 2.2%, a value below the bound
for a confounder once or twice as strong as Female (shown by red tick marks), which in this case
is arguably one of the strongest predictors of the treatment assignment. In most circumstances,
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considering the worst case scenario of R2
Y∼Z|D,X = 1 might be needlessly conservative. Hence, we

propose plotting other extreme scenarios, as shown in Figure 3, where we consider different values
of the partial R2 of the unobserved confounder with the outcome, including 75% and 50%.

6 Discussion

6.1 Making formal sensitivity analysis standard practice

Given that ruling out unobserved confounders is often difficult or impossible in observational research,
one might expect that sensitivity analyses would be a routine procedure in numerous disciplines.
Why then are they not commonplace? We surmise there are three main obstacles, which we directly
address in this paper.

Strong parametric assumptions

First, the assumptions that many methods impose on the nature and distribution of unobserved
confounders as well as on the treatment assignment mechanism may be difficult to sustain in some
cases. For instance, Rosenbaum and Rubin (1983a), Imbens (2003), Carnegie et al. (2016b) and Dorie
et al. (2016) require specifying the distribution of the confounder as well as modeling the treatment
assignment mechanism; in another direction, the methods put forward in Robins (1999), Brumback
et al. (2004), Blackwell (2013) need to directly specify a confounding function parameterizing the
difference in potential outcomes among treated and control units. While assessing the sensitivity to
some forms of confounding is an improvement over simply assuming no confounding (and users may
be able to make suitable parameteric assumptions in some circumstances), widespread adoption of
sensitivity analysis would benefit from methods that do not require users to make those restrictions
a priori. Our derivations are rooted in the traditional OVB precisely to avoid those simplifying
assumptions. As we have seen, the partial R2 parameterization allows a flexible framework for
assessing the sensitivity of the point estimate, as well as t-values and confidence intervals, allowing
for multiple (possibly nonlinear) confounders, even including mispecification of the functional form
of the observed covariates.

Lack of simple sensitivity measures for routine reporting

A second obstacle to a wider adoption of sensitivity analysis is the lack of general, yet simple and
interpretable sensitivity measures users can report alongside other regression summary statistics.
Our minimal reporting recommendation for regression tables (see Table 1) aims to fill this gap
for regression models with: (i) the robustness value, which conveniently summarizes the minimal
strength of association a confounder needs to have to change the research conclusions, and (ii) the
R2
Y∼D|X , which works as an extreme-scenario sensitivity analysis. Regarding the robustness value in

particular, we now discuss its relation to two other proposals advocated in the literature: the impact
thresholds of Frank (2000) and the E-value of VanderWeele and Ding (2017).

Frank (2000) proposes characterizing the strength of the unobserved confounder Z with what he
denotes as its impact, defined as the product RY∼Z|X ×RD∼Z|X .20 This is then used to determine
impact thresholds, defined as the minimum impact of the unobserved confounder necessary to not
reject the null hypothesis of zero effect. However, as Equation 14 reveals, the determinant of the
bias is the bias factor BF = RY∼Z|D,X × fD∼Z|X , which does not have a one-to-one mapping with

20Not to confuse with γ̂ of the “impact times imbalance” heuristic, as discussed in Section 3.2.
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the confounder’s impact. This can be made clear by rewriting the relative bias showing the product
RY∼Z|X ×RD∼Z|X explicitly,

relative bias =
|

Frank’s impact︷ ︸︸ ︷
RY∼Z|XRD∼Z|X −RY∼D|XR2

D∼Z|X |
|RY∼D|X(1−R2

D∼ZX)|
. (25)

Equation 25 reveals that: (i) an unobserved confounder with zero impact can still cause non-zero
(downward) bias; (ii) an unobserved confounder with a non-zero impact can nevertheless induce
zero bias (when impact = RY∼D|XR

2
D∼Z|X); and, (iii) the two terms that compose the product

RY∼Z|X × RD∼Z|X do not enter symmetrically in the bias equation, hence confounders with the
same impact can cause widely different biases. This creates difficulties when trying to generalize
the impact thresholds proposed in Frank (2000) to arbitrary non-zero null hypothesis of regression
coefficients.21 Note this is not a problem for the robustness value, since it acts as a convenient
reference point uniquely characterizing any confounder with a bias factor of BF = RV q/

√
1−RV q.

As to VanderWeele and Ding (2017), the authors have recently advanced the E-value, a sensitivity
measure suited specifically for the risk ratio. For other effect measures, such as risk differences, the
E-value is an approximation, whereas if the researcher uses linear regression to obtain an estimate,
the robustness value is exact. Also, while the robustness value parameterizes the association of the
confounder with the treatment and the outcome in terms of percentage of variance explained (the
partial R2), the E-value parameterizes these in terms of risk ratios. Whether one scale is preferable
over the other depends on context, and researchers should be aware of both options. Overall, we
believe the dissemination of measures such as the E-value and the robustness value is an important
step towards the widespread adoption of sensitivity analysis to unobserved confounding. In current
practice, robustness is often informally or implicitly linked to t-values or p-values, neither of which
correctly characterizes how sensitive an estimate is to unobserved confounding. The extension of the
robustness value to non-linear models is worth exploring in future research.

Difficulty in connecting sensitivity analysis to domain knowledge

Finally, the third and perhaps most fundamental obstacle to the use of sensitivity analysis is the
difficulty in connecting the formal results to the researcher’s substantive understanding about the
object under study. This can be only partially overcome by statistical tools, as it relies upon the
nature of the domain knowledge used for plausibility judgments. In this paper we have showed
how one can formally bound the strength of an unobserved confounder with the same strength (or a
multiple thereof) as a chosen group of observed covariates, using three different types of comparisons.
This allows researchers to exploit knowledge regarding the relative importance of observed covariates:
when researchers can credibly argue to have measured the most important determinants of the
treatment assignment and of the outcome (in terms of variance explained), this bounding exercise
can be a valuable tool. As we discuss next, previous attempts to make such comparisons have been
problematic, either due to informal benchmarking practices that do not warrant the claims they
purport to make, or by relying on inappropriate parameterization choices.

21Let q denote the relative bias and consider biases that move the effect toward (or through) zero. Solving Equation 25
for impact gives us impact = RY∼D|X(q − (q − 1)R2

D∼Z|X). Note that, given q and RY∼D|X , the impact necessary to

bring about a relative bias of magnitude q still depends on the sensitivity parameter R2
D∼Z|X—except when q = 1.

For a numerical example, see Supplement A.5.
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6.2 The risks of informal benchmarking

While prior work has suggested informal benchmarking procedures using statistics of observed co-
variates X to help researchers “calibrate” their intuitions about the strength of the unobserved
confounder Z (Frank 2000; Imbens 2003; Hosman et al. 2010; Dorie et al. 2016; Carnegie et al.
2016b; Middleton et al. 2016; Hong et al. 2018), this practice has undesirable properties and can
lead users to erroneous conclusions, even in the ideal case where they do have the correct knowledge
about how Z compares to X. This happens because the estimates of how the observed covariates
are related to the outcome may be themselves affected by the omission of Z, regardless of whether
one assumes Z to be independent of X. To illustrate this threat concretely, let us first consider a
simple simulation where there is no effect of D on Y , Z is orthogonal to X and, more importantly,
Z is exactly like X.22 The results are shown in Figure 4.

Note the informal benchmark point is still far away from zero, leading the investigator to incor-
rectly conclude that a confounder “not unlike X” would not be sufficient to bring down the estimated
effect to zero—when in fact it would. This incorrect conclusion occurs despite the investigator cor-
rectly assuming both that the unobserved confounder is “no worse” than X (in terms of its strength
of relationship to the treatment and outcome) and that Z ⊥ X. Figure 4 also shows the formal
bounds obtained with the procedures given in Section 4.4. Note these would lead the researcher to
the correct conclusion: an unobserved confounder with the same strength as X would be powerful
enough to bring down the estimated effect to zero.
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Figure 4: Sensitivity contours of point estimate — informal benchmarking versus proper bounds

22We use structural equations, Y = X + Z + εy, D = X + Z + εd, X = εx, Z = εz where all disturbances, are
independent standard normal random variables. See also Supplement C.
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Why exactly does this happen? Consider for a moment the difference between the coefficient on
X in the full Equation 3, β̂, and its estimate in the restricted Equation 4, β̂res. Using the same
OVB approach of “impact times imbalance”, we arrive at β̂res − β̂ = γ̂ψ̂, where ψ̂ is obtained from
the regression Z = δ̂D +Xψ̂ + ε̂Z . Note that ψ̂ can be non-zero even if X ⊥ Z, because D is a
collider (Pearl 2009), and conditioning on D creates dependency between Z and X. The reasoning
holds whether one is using the regression coefficients themselves or other observed statistics, such as
partial correlations, partial R2 values or t-values. This renders claims of the type “a confounder Z
not unlike X could not change the research conclusions” unreliable when observed statistics without
proper adjustment are used for benchmarking.

We can use the formal bounds derived in Equation 22 to quantify how misleading claims us-
ing informal benchmarks would be. In the partial R2 parameterization, this amounts to using as
benchmarks kDR

2
D∼Xj |X−j and kYR

2
Y∼Xj |X−j ,D, instead of the proper bounds kDf

2
D∼Xj |X−j and

η2f2Y∼Xj |X−j ,D. There are, thus, two discrepancies: (i) an adjustment of baseline variance to be

explained, when converting the partial R2 to partial Cohen’s f2 = R2/(1−R2), which affects both
coordinates of the benchmark; and, (ii) the collider bias due to the association of Xj with D, which
affects only the bound on R2

Y∼Z|D,X via η2 ≥ kY .23 Therefore, the stronger the association of Xj

with the treatment, and the larger the multiples used for comparisons (“k times as strong”), the
more misleading informal benchmarks will be.24 We thus advise against informal benchmarking pro-
cedures, and previous studies relying upon these methods may warrant revisiting, especially those
where benchmark points have strong association with the treatment assignment.

6.3 On the choice of parameterization

The approach of Hosman et al. (2010) is also rooted in the OVB framework, but it suffers from
two main deficiencies. The first is the central role informal benchmarking plays in their proposal,
which can be seriously misleading as discussed in the previous section. The second issue is more
subtle, but equally important: the choice of parameterization. Hosman et al. (2010) ask researchers
to “calibrate intuitions” about the strength of the confounder with the treatment using a t-value.
This is a problematic choice because the t-value incorporates information on both the strength
of association and the sample size, the latter being irrelevant for identification concerns. What
constitutes a large t-value for “statistical significance” does not map directly to what constitutes a
large strength of a confounder, as this mapping varies significantly depending on sample size.25

An alternative bounding argument has also been presented in Oster (2017) which, unlike the
informal benchmarking practices previously discussed, provides a formal identification result. Nev-
ertheless, the proposed procedure asks users to reason about a quantity that is very difficult to
understand. More precisely, Oster (2017) asks researchers to make plausibility judgments on two
sensitivity parameters, Rmax and δOster. The Rmax parameter is simply the maximum explanatory

23The adjustment of baseline variance may affect informal benchmarks based on correlational (Frank 2000), partial
R2 (Imbens 2003), and t-value (Hosman et al. 2010) measures. The collider bias may affect informal benchmarks that
condition on D. Benchmarks that do not condition on D (such as in Frank 2000) are not affected by collider bias.

24In our running example, since female explains less than 1% of the residual variance of the treatment, informal
benchmarks would not be markedly different from the formal ones.

25The t-value in the expression of the bias is an artifact of both multiplying and dividing by the degrees of freedom,
as in our Equation 12. While t-values can be useful for computational purposes (to utilize quantities routinely reported
in regression tables), their dependence on sample size makes them inappropriate for contemplating how strongly related
a confounder is to the treatment. Consider a t-value of 200. With 100 degrees of freedom, the confounder explains
virtually all the residual variance of the treatment (partial R2 of 0.9975), while with 10 million degrees of freedom, the
confounder explains less than 0.5%. These are clearly confounders with very different strengths, and the partial R2

clarifies this distinction.
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power that one could have with the full outcome regression, i.e., Rmax = R2
Y∼D+X+Z . As discussed

in Section 4.2 (Equation 17) this has a one to one relationship with R2
Y∼Z|X,D,

R2
Y∼Z|X,D =

Rmax −R2
Y∼D+X

1−R2
Y∼D+X

(26)

By contrast the second sensitivity parameter, δOster, is not easily interpretable in substantive
terms. Following Altonji et al. (2005), Oster (2017) defines “indices” W1 := Xβ̂ and W2 := Zγ̂,
where X is a matrix of observed covariates and Z a matrix of unobserved covariates. Criti-
cally, β̂ and γ̂ are chosen such that Y = τ̂D + W1 + W2 + ε̂full.

26 The δOster parameter equals
cov(W2, D)/var(W2) × var(W1)/cov(W1, D), and is intended as a measure of “proportional selec-
tion”, i.e. how strongly the unobservables drive treatment assignment, relative to the observables.
The problem here is that constructing indices W1 and W2 based on relationships to the outcome is
not innocuous: δOster captures not only the relative influence of X and Z over the treatment, but
also their association with the outcome. To examine the simple case with only one covariate and
one confounder and assuming X ⊥ Z, we have,

δOster =
cov(W2, D)

var(W2)

var(W1)

cov(W1, D)
=

cov(γ̂Z,D)

var(γ̂Z)

var(β̂X)

cov(β̂X,D)
=

cov(Z,D)

γ̂var(Z)

β̂var(X)

cov(X,D)
=
λ̂

γ̂

β̂

θ̂
, (27)

where λ̂ and θ̂ are the coefficients of the regression, D = θ̂X + λ̂Z + ε̂D. Consequently, claims that
δOster = 1 implies “the unobservable and observables are equally related to the treatment” (Oster
2017, p.6) can lead researchers astray, as this quantity also depends upon associations with the
outcome. To see how, let the variables be standardized to mean zero and unit variance, and pick
β̂ = θ̂ = p, γ̂ = λ̂ = p/2, and τ̂ = 0. In this case, the confounder Z has either half or one fourth
of the explanatory power of X (as measured by standardized coefficients or variance explained),
yet δOster = 1. While researchers may be able to make arguments about relative explanatory
power of observables and unobservables in the treatment assignment process, the δOster parameter
does not correspond directly to such claims.27 By contrast, the parameter kD we introduce in our
bounding procedure (Section 4.4) captures precisely this notion of the relative explanatory power
of the unobservable and observable over treatment assignment, in terms of partial R2 or total R2,
depending on the investigator’s preference.

Such parameterization choices are more than notional when they drive a wedge between what
investigators can argue about and the values of the parameters these arguments imply. It is thus
important that the sensitivity parameters used in these exercises be as transparent as possible
and match investigators’ conception of what the parameters imply. Hence, we employ R2 based
parameters, rather than t-values or quantities relating indices. The resulting sensitivity parameters
not only correspond more directly to what investigators can articulate and reason about, but also

26Oster (2017) uses population values. Here we use sample values to maintain consistency with the rest of the paper,
but this has no consequence for the argument in question.

27Indeed, arguments made by researchers applying Oster (2017) suggest they believe they are comparing the ex-
planatory power of observables and unobservables over treatment assignment in terms such as correlation or variance
explained, e.g. “Following the approach suggested by Altonji, Elder, and Taber (2005) and Oster (2017), we esti-
mate that unobservable country-level characteristics would need to be 1.44 times more correlated with treatment than
observed covariates to fully explain the apparent impact of grammatical gender on the level of female labor force
participation; unobserved factors would need to be 3.23 times more closely linked to treatment to explain the impact
of grammatical gender on the gender gap in labor force participation.” (Jakiela and Ozier 2018, p.4)
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lead to the rich set of sensitivity exercises we have discussed. Of course, further improvements may
be possible and future research should investigate whether such flexibility can be achieved with yet
more meaningful parameterizations.

The tools we propose here, like any other, have potential for abuse. We thus end with impor-
tant caveats, in particular emphasizing that sensitivity analysis should not be used for automatic
judgment, but as an instrument for disciplined arguments about confounding.

6.4 Sensitivity analysis as principled argument

Sensitivity analyses tell us what we would have to be prepared to believe in order to accept the
substantive claims initially made (Rosenbaum 2005 2010 2017). The sensitivity exercises proposed
here tell the researcher how strong unobserved confounding would have to be in order to meaningfully
change the treatment effect estimate beyond some level we are interested in, and employ observed
covariates to argue for bounds on unobserved confounding where possible. Whether we can rule
out the confounders shown to be problematic depends on expert judgment. As a consequence, the
research design, identification strategy as well as the story explaining the quality of the covariates
used for benchmarking all play vital roles.

For this reason, we do not propose any arbitrary thresholds for deeming sensitivity statistics,
such as the robustness value or the partial R2 of the treatment with the outcome, sufficiently large to
escape confounding concerns. In our view, no meaningful universal thresholds of the sort is possible
to establish. In a poorly controlled regression on observational data, with no clear understanding
of what (unobservables) might influence treatment uptake, it would be difficult to credibly claim
that a robustness value of 15% is “good news”, since the investigator does not have the necessary
domain knowledge to rule out the strength of unobserved confounders down to this level. On the
other hand, in a quasi-experiment where the researcher knows the treatment was assigned in such
a way that observed covariates account for almost any possible selection, a more credible case may
be made that the types of confounders that would substantially alter the research conclusions are
unlikely.

Similarly, we strongly warn against blindly employing covariates for bounding the strength of
confounders, without the ability to argue that they are likely to be among the strongest predictors of
the outcome or treatment assignment. A particular moral hazard is that weak covariates can make
the apparent bounds look better. It is thus imperative for readers and reviewers to demand that
researchers properly justify and interpret their sensitivity results, after which such claims can be
properly debated. Sensitivity analysis is best suited as a tool for disciplined quantitative arguments
about confounding, not for obviating scientific discussions by following automatic procedures.

This transition from a qualitative to a quantitative discussion about unobserved confounding
can often be enlightening. As put by (Rosenbaum 2017, p. 171), it may “provide grounds for
caution that are not rooted in timidity, or grounds for boldness that are not rooted in arrogance”. A
sensitivity analysis raises the bar for the skeptic of a causal estimate—not just any criticism is able
to invalidate the research conclusions. The hypothesized unobserved confounder now has to meet
certain standards of strength; otherwise, it cannot logically account for all the observed association.
Likewise, it also raises the bar for defending a causal interpretation of an estimate—proponents must
articulate how confounders with certain strengths can be ruled out.

A final point of concern is the potential misuse of sensitivity analysis in the gatekeeping of pub-
lications. Sensitivity analysis should not be misappropriated as a tool for inhibiting “imperfectly
identified” research on relevant topics. Studies on important questions using state-of-the-art re-
search design, which turn out to not be robust to reasonable sources of confounding, should not
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be dismissed. On the contrary, with sensitivity analyses, we can conduct imperfect investigations,
while transparently revealing how susceptible our results are to unobserved confounders. This gives
future researchers a starting point and roadmap for improving upon the robustness of these answers
in their following inquiries.
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A Simple measures for routine reporting

A.1 Preliminaries

For any univariate regression, recall R2 = t2/(t2+df), t2 =
(

R2

1−R2

)
df, and f2 = R2

1−R2 = t2

df , where df

is the regression’s degrees of freedom. Repeating the partialling out procedure to allow for covariates,
the partial R2 of any covariate can be written in terms of its coefficient’s t statistic and vice-versa.

For instance, the partial R2 of the confounder with the treatment, conditional on X, can be
written as

R2
D∼Z|X =

t2
δ̂

t2
δ̂

+ df
. (28)

Analogously,

f2D∼Z|X =
R2
D∼Z|X

1−R2
D∼Z|X

=
t2
δ̂

df
. (29)

A.2 General strength of a confounder

Consider a confounder strong enough to change the estimated treatment effect by (100× q)%. This

means that |b̂ias| = q|τ̂res|. Hence, by equation 13 we have that

q|τ̂res| =

√√√√R2
Y∼Z|D,X R2

D∼Z|X

1−R2
D∼Z|X

ŝe(τ̂res)
√

df. (30)

Dividing both sides by ŝe(τ̂res)
√

df and noting |τ̂res|
ŝe(τ̂res)

√
df

=
|tτ̂res |√

df
= fY∼D|X , we obtain

q|fY∼D|X | =

√√√√R2
Y∼Z|D,X R2

D∼Z|X

1−R2
D∼Z|X

(31)

= |RY∼Z|D,X × fD∼Z|X | (32)

= BF. (33)

That is, to bring the estimated effect down by (100 × q)%, the bias factor (BF) of the confounder(
RY∼Z|D,XfD∼Z|X

)
has to equal q times the partial f of the treatment with the outcome.
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A.3 Extreme sensitivity scenarios

Considering the extreme case scenario where the confounders explain all the residual variance of the
outcome, that is, R2

Y∼Z|D,X = 1, a confounder strong enough to bring down the estimated effect to

zero, that is q = 1, would need to satisfy f2Y∼D|X = f2D∼Z|X which implies R2
Y∼D|X = R2

D∼Z|X . This

shows the partial R2 of the treatment with the outcome is itself a measure of an extreme-scenario
sensitivity analysis.

A.4 The Robustness Value (RV)

Now consider a confounder with R2
Y∼Z|D,X = R2

D∼Z|X = RVq. Rearranging terms and squaring
Equation 31, one obtains

RV 2
q + f2qRVq − f2q = 0, (34)

where fq := q|fY∼D|X |. Solving the quadratic equation for RVq,

RVq =
1

2

(√
f4q + 4f2q − f2q

)
(35)

gives us the equation for the robustness value for the point estimate. Note that, since the derivative of
the bias with respect to both sensitivity parameters is positive, any confounder with both associations
below RVq is not strong enough to bring about a relative bias of q.

RV for t-values, or lower and upper bounds of confidence intervals

Imagine the researcher wants to know how strong a confounder would need to be for a 100(1− α)%
confidence interval to include a change of (100 × q)% of the treatment estimate. Consider again a
confounder with equal association with the treatment and the outcome, R2

Y∼Z|D,X = R2
D∼Z|X =

RVq,α. By Equation 13,

|τ̂ | = |τ̂res| − ŝe(τ̂res)
RVq,α√

1−RVq,α

√
df, (36)

where we are assuming the bias reduces the absolute value of the estimated effect. For the opposite
direction the subtraction would be changed to addition. Further, for any confounder with equal as-
sociation with the treatment and the outcome, Equation 12 for the adjusted standard error simplifies
to

ŝe(τ̂) = ŝe(τ̂res)

√
df

df− 1
. (37)

Let |t∗α,df−1| denote the t-value threshold for a t-test with significance level of α and df−1 degrees of

freedom, and define f∗α,df−1 := |t∗α,df−1|/
√

df− 1. Now note that, for the adjusted t-test to not reject
the hypothesis H0 : τ = (1− q)τ̂res, we must have
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|t∗α,df−1| ≥
|τ̂ | − (1− q)|τ̂res|

ŝe(τ̂)
(38)

≥
q|τ̂res| − ŝe(τ̂res)

RVq,α√
1−RVq,α

√
df

ŝe(τ̂res)
√

df
df−1

(39)

≥

(
q|fY∼D|X | −

RVq,α√
1−RVq,α

)
√

df− 1. (40)

Divide by
√

df− 1 and rearrange terms to obtain,

RVq,α√
1−RVq,α

≥ fq − f∗α,df−1 = fq,α, (41)

where we define fq,α := fq − f∗α,df−1. Our goal is to find the minimal strength of the confounder
RVq,α (which must be positive) such that this inequality holds. Thus, we have two cases. If fq,α < 0,
then trivially RVq,α = 0. This happens when an inclusion of a covariate with zero predictive power
would be enough not to reject the null hypothesis, either because the t-value is already low enough,
or because it becomes low enough after adjusting for the loss in degrees of freedom.

Now consider the case where fq,α > 0, which means the minimum will happen in the equality.
Rearrange terms and square to obtain,

RV 2
q,α + f2q,αRVq,α − f2q,α = 0. (42)

Solving the quadratic equation for RVq,α gives us the robustness value for a reduction of (100× q)%
to not be rejected at the significance level α,

RVq,α =
1

2

(√
f4q,α + 4f2q,α − f2q,α

)
. (43)

Note that, due to the variance reduction factor of Eq 15, it could be the case that increasing
the sensitivity parameter R2

Y∼Z|D,X helps with statistical significance. When this happens, there

can exist a set of confounders with lower R2
Y∼Z|D,X and R2

D∼Z|X than RVq,α able to drive the t-
statistic below significance. To check for such cases, we need to verify whether the derivative of the
adjusted t-value with respect to R2

Y∼Z|D,X is negative (the derivative with respect to R2
D∼Z|X is

always negative). The t-value for τ̂ for testing the null hypothesis H0 : τ = (1−q)τ̂res can be written
as,

tτ̂ ,q =
τ̂ − (1− q)τ̂res

ŝe(τ̂)
=
fq
√

1−R2
D∼Z|X −

√
R2
Y∼Z|D,X

√
R2
D∼Z|X

1−
√
R2
Y∼Z|D,X

×
√

df− 1 (44)

Dividing by
√

df− 1 and taking the derivative with respect to R2
Y∼Z|D,X gives us,
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∂tτ̂ ,q
∂R2

Y∼Z|D,X
=
fq
√

1−R2
D∼Z|X

√
R2
Y∼Z|D,X −

√
R2
D∼Z|X

2
√
R2
Y∼Z|D,X(1−R2

Y∼Z|D,X)3/2
(45)

Equation 45 is negative when the numerator is less than zero, that is, when

R2
D∼Z|X

(1−R2
D∼Z|X)R2

Y∼Z|D,X
> f2q (46)

For the point of equal association, R2
Y∼Z|D,X = R2

D∼Z|X = RVq,α, the condition in Eq. 46 simplifies

to RVq,α > 1− 1/f2q . Note that, since RV ≥ 0 this condition will often hold—for instance, for q = 1,
whenever the partial R2 of the treatment with the outcome is less or equal to 50%, the first order
condition is guaranteed to hold.

When condition 46 does not hold, Eq 43 is still a useful and meaningful reference point of a
specific contour line. However, one may want to alternatively define the RVq,α as the maximum
bound on both coordinates such that any confounder with (both) associations below that bound
cannot bring the t-value below the chosen critical level. In that case, given a bound of RVq,α on
both coordinates, we can solve the following constrained minimization problem,

min
R2
Y∼Z|D,X ,R2

D∼Z|X

tτ̂ ,q s.t. R2
Y∼Z|D,X ≤ RVq,α and R2

D∼Z|X ≤ RVq,α (47)

Since the derivative of the adjusted t-value with respect to R2
D∼Z|X is always negative, the

optimum R2
D∼Z|X always reaches the bound. Next we have two cases: when (i) the derivative of the

solution with respect to R2
Y∼Z|D,X is negative, this means the optimum for both arguments reach

the bound, and solving for a specific t-value threshold gives RVq,α as before (Eq. 43); when (ii) the
derivative of the solution with respect to R2

Y∼Z|D,X is zero, then the optimal R2
Y∼Z|D,X is an interior

point, which by Eq. 46 equals R2
Y∼Z|D,X = RVq,α/((1 − RVq,α)f2q ). Solving for a specific t-value

threshold gives us the bound,

RVq,α =
f2q − f∗2α,df−1

1 + f2q
(48)

Finally, note that if one picks the threshold |t∗α,df−1| = 0 then RVq,α trivially reduces to RVq.
Also note that, for fixed |t∗α,df−1|, when df → ∞ we have that RVq,α → RVq, since standard errors
become irrelevant when compared to the bias of the point estimate.

A.5 Impact thresholds (Frank 2000) for non-zero null hypothesis

In Section 6.1 we showed that a confounder’s impact, as defined in Frank (2000), does not fully
characterize the minimal strength of confounding necessary to bring about a certain amount of bias
in the regression coefficient, except when the relative bias is unity (that is, when the null hypothesis
of interest is zero). Thus, the impact thresholds obtained in Frank (2000) under the null of zero (in
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which caseRY∼Z|X = RD∼Z|X) cannot be immediately generalized to non-zero null hypotheses. Here
we provide a simple illustrative numerical example. Consider the case with no observed covariates
X, a single unobserved confounder Z, all variables standardized to mean zero and unit variance
and a sample of size 1, 000. Suppose τ̂res = 0.5, ŝe(τ̂res) = 0.0274 and that we want to learn the
minimal strength of Z necessary to bring this estimate to τ̂ = −0.5 (a relative bias of 2). Solving
the bias equation for the case where RY∼Z|X = RD∼Z|X one would obtain an impact threshold of
2/3. However, this is not the minimal impact that would make τ̂ = −0.5. As a counterexample, a
confounder with an impact as low as 0.51 is sufficient to bring about a change of this magnitude,
with RY∼Z|X = 0.515 and RD∼Z|X = 0.99.

B Formal benchmark bounds

Suppose the researcher has substantive knowledge that certain covariates are “the most important
predictors of the outcome” and other covariates “the most important predictors of the treatment
assignment”. Imagine, also, that the researcher is willing to defend the claim that the unobserved
confounder Z is not “as strong” as those covariates.

In order to use this information for bounding the strength of the confounder Z, we need to give
it an operational meaning. We operationalize these types of claim as comparisons of the explanatory
power of the confounder vis-a-vis the explanatory power of the observed covariates. Mathematically,
we can quantify these comparisons using total or partial R2 measures. Here we will assume that
Z ⊥ X or, equivalently, that the following analysis applies to the part of Z not linearly explained
by covariates X.

B.1 Comparing total the R2 of covariates with the total R2 of the confounder

Although in the text we use the bounds by comparing partial R2 measures, perhaps the simplest
derivation is the comparison of the total R2 of observed covariates with the total R2 of the unobserved
confounder Z. Consider an example in which the observed covariateXj is assumed to be an important
predictor of the treatment assignment D. If the researcher believes the correlation of Xj with D to
be stronger than the correlation of Z with D, this implies,

R2
D∼Z < R2

D∼Xj . (49)

We could use the same argument for comparing R2
Y∼Z with R2

Y∼Xj . As it happens, such claims are
sufficient to bound the sensitivity parameters. Let us generalize this notion by defining,

kD :=
R2
D∼Z

R2
D∼Xj

, kY :=
R2
Y∼Z

R2
Y∼Xj

. (50)

That is, kD and kY measure how the correlation of Z, with D and Y , compares to the correlation
of Xj with those same variables. Our goal here is to re-express both sensitivity parameters as a
function of kD and kY . Since Z ⊥X, we have that

R2
D∼Z+X = R2

D∼Z +R2
D∼X = kDR

2
D∼Xj +R2

D∼X (51)

R2
Y∼Z+X = R2

Y∼Z +R2
Y∼X = kYR

2
Y∼Xj +R2

Y∼X . (52)
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Now we can trivially re-express R2
D∼Z|X as function of kD,

R2
D∼Z|X =

R2
D∼Z+X −R2

D∼X
1−R2

D∼X
(53)

= kD

(
R2
D∼Xj

1−R2
D∼X

)
. (54)

Analogous result holds for R2
Y∼Z|X . What remains is to re-express R2

Y∼Z|D,X . Using the standard
recursive definition of partial correlations, we know that

∣∣RY∼Z|X,D

∣∣ =

∣∣RY∼Z|X −RY∼D|XRD∼Z|X ∣∣√
1−R2

Y∼D|X

√
1−R2

D∼Z|X

. (55)

The only two terms of the RHS including the confounder, RY∼Z|X and RD∼Z|X , have been re-
expressed as a function of kD and kY above. We now show how to determine the sign of the
correlations, by considering the direction of the strengths of the confounder act towards hurting our
preferred hypothesis.

Let us assume the confounder acts towards reducing the absolute value of the effect size. If the
effect size is positive (RY∼D|X > 0), this means RY∼Z|D,X and RD∼Z|X must have the same signs.
Consider, first, RY∼Z|X,D < 0 and RD∼Z|X < 0. This implies RY∼Z|X < 0, which means we are
reducing the absolute value of RY∼Z|X . Now consider RY∼Z|D,X > 0 and RD∼Z|X > 0. This implies
RY∼Z|X > 0, which, again, means we are reducing the absolute value of RY∼Z|X . If the effect size is
negative (RY∼D|X < 0), this now would mean that RY∼Z|D,X and RD∼Z|X must have the opposite
signs, and applying the previous arguments, we reach the same conclusion that we will be reducing
the absolute value of RY∼Z|X .

Therefore, considering that the confounder acts towards reducing the magnitude of the estimate
towards zero, we have that,

∣∣RY∼Z|X,D

∣∣ =
|RY∼Z|X | − |RY∼D|XRD∼Z|X |√

1−R2
Y∼D|X

√
1−R2

D∼Z|X

. (56)

Extending the previous arguments to multiple covariates is straightforward, since these results hold
for any subset of X.

B.2 Comparing the partial R2 of covariates with the partial R2 of the confounder

Now imagine the researcher is willing to make a more elaborate type of claim. For instance, the
researcher believes that omitting Xj increases the mean squared error of the full treatment regression
more than omitting Z. This means that, R2

D∼X−j+Z < R2
D∼X , where X−j represents all variables

in X except Xj . If we now subtract of both sides R2
D∼X−j and further divide them by 1−R2

D∼X−j ,
this gives us,

R2
D∼X−j+Z −R

2
D∼X−j

1−R2
D∼X−j

<
R2
D∼X −R2

D∼X−j
1−R2

D∼X−j
. (57)
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Which means that

R2
D∼Z|X−j < R2

D∼Xj |X−j . (58)

That is, we can compare the strength of Z to Xj by assessing their relative contribution to the
partial R2 of the treatment regression given the remaining covariates. Generalizing this notion
define,

kD :=
R2
D∼Z|X−j

R2
D∼Xj |X−j

. (59)

Our goal now is to re-express R2
D∼Z|X in terms of kD.

Bounding R2
D∼Z|X

From equation 59 we have that |RD∼Z|X−j | =
√
kD|RD∼Xj |X−j |. Also, the assumption that Z ⊥X

implies RZ∼Xj |X−j = 0. Combining these two results, and using the standard recursive definition of
partial correlations, gives us

∣∣RD∼Z|X ∣∣ =

∣∣∣∣∣∣RD∼Z|X−j −RD∼Xj |X−jRZ∼Xj |X−j√
1−R2

D∼Xj |X−j

√
1−R2

Z∼Xj |X−j

∣∣∣∣∣∣ (60)

=

∣∣∣∣∣∣ RD∼Z|X−j√
1−R2

D∼Xj |X−j

∣∣∣∣∣∣ (61)

=

√
kD

∣∣∣RD∼Xj |X−j ∣∣∣√
1−R2

D∼Xj |X−j

(62)

=
√
kD

∣∣∣fD∼Xj |X−j∣∣∣ . (63)

Hence,

R2
D∼Z|X = kD × f2D∼Xj |X−j . (64)

Also, notice that, since R2
D∼Z|X ≤ 1 this, means kD cannot vary freely but rather is bounded by

kD ≤
1

f2D∼Xj |X−j
. (65)

As an example, if a researcher has a covariate that currently explains 50% of the residual variance
of the treatment assignment (implying f2D∼Xj |X−j = 1), Equation 65 reveals it is impossible to have

an orthogonal unobserved confounder Z stronger than that covariate.

35



Using multiple covariates. Now let us generalize the previous bound to multiple covariates. Let
this set of covariates be X(1...j) = {X1, . . . , Xj}. We will denote the complement of this set X−(1...j).
Thus, kD now is defined as

kD :=
R2
D∼Z|X−(1...j)

R2
D∼X(1...j)|X−(1...j)

. (66)

Applying the recursive definition of partial correlation to, RD∼Z|X , RD∼Z|X−(1)
, RD∼Z|X−(1,2)

, up
to RD∼Z|X−(1,...,j)

, and recalling the orthogonality of Z with X, we have that,

RD∼Z|X =
RD∼Z|X−(1,...,j)√

1−R2
D∼X1|X−(1)

√
1−R2

D∼X2|X−(1,2)
. . .
√

1−R2
D∼Xj |X−(1,...,j)

. (67)

Since, R2
D∼Z|X−(1...j)

= kDR
2
D∼X(1...j)|X−(1...j)

, we obtain,

∣∣RD∼Z|X ∣∣ =

√
kD

∣∣∣RD∼X(1...j)|X−(1...j)

∣∣∣√
1−R2

D∼X1|X−(1)

√
1−R2

D∼X2|X−(1,2)
. . .
√

1−R2
D∼Xj |X−(1,...,j)

. (68)

We can simplify this further by noticing the denominator is simply
√

1−R2
D∼X(1...j)|X−(1...j)

∣∣RD∼Z|X ∣∣ =

√
kD

∣∣∣RD∼X(1...j)|X−(1...j)

∣∣∣√
1−R2

D∼X(1...j)|X−(1...j)

=
√
kD

∣∣∣fD∼X(1...j)|X−(1...j)

∣∣∣ . (69)

Bounding RY∼Z|D,X

We have two ways of bounding RY∼Z|D,X , making comparisons conditional or not conditional on D.

Comparisons not conditioning on D. As in the previous derivation, define,

kY :=
R2
Y∼Z|X−(1...j)

R2
Y∼X(1...j)|X−(1...j)

. (70)

That is, we are asking the researcher to compare the explanatory power of the confounder against the
explanatory power of X(1...j) with respect to the outcome, conditioning on the remaining covariates
X−(1...j) but not conditioning on the treatment. Using the same recursive argument as before, we
obtain

∣∣RY∼Z|X ∣∣ =
√
kY

∣∣∣fY∼X(1...j)|X−(1...j)

∣∣∣ . (71)

We can now bound R2
Y∼Z|D,X by noting again that
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RY∼Z|D,X =
RY∼Z|X −RY∼D|XRD∼Z|X√

1−R2
Y∼D|X

√
1−R2

D∼Z|X

, (72)

then using the same argument as in B.2.

Comparisons conditioning on D. Here we have that kD is defined as before, but kY compares
the explanatory power of the confounder against the explanatory power of a covariate Xj with
respect to the outcome, conditioning on both the remaining covariates X−(1...j) and the treatment,
that is,

kD :=
R2
D∼Z|X−j

R2
D∼Xj |X−j

, kY :=
R2
Y∼Z|X−j ,D

R2
Y∼Xj |X−j ,D

. (73)

To bound R2
Y∼Z|D,X , we first need to investigate RZ∼Xj |X−j ,D. Expanding the partial correlation

gives us

∣∣∣RZ∼Xj |X−j ,D∣∣∣ =

∣∣∣∣∣∣RZ∼Xj |X−j −RD∼Z|X−jRD∼Xj |X−j√
1−R2

D∼Z|X−j

√
1−R2

D∼Xj |X−j

∣∣∣∣∣∣ (74)

=

∣∣∣∣∣∣ RD∼Z|X−jRD∼Xj |X−j√
1−R2

D∼Z|X−j

√
1−R2

D∼Xj |X−j

∣∣∣∣∣∣ (75)

=

∣∣∣∣∣∣
√
kDRD∼Xj |X−jRD∼Xj |X−j√

1− kDR2
D∼Xj |X−j

√
1−R2

D∼Xj |X−j

∣∣∣∣∣∣ (76)

=
∣∣∣fKD × fD∼Xj |X−j∣∣∣ . (77)

where, fKD is defined to be,

fKD :=

√
kDRD∼Xj |X−j√

1− kDR2
D∼Xj |X−j

. (78)

Combining theses results and Equation 73 we can proceed to bound RY∼Z|D,X :
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|RY∼Z|D,X | =

∣∣∣∣∣∣RY∼Z|X−j ,D −RY∼Xj |X−jDRZ∼Xj |X−j ,D√
1−R2

Y∼Xj |X−jD

√
1−R2

Z∼Xj |X−j ,D

∣∣∣∣∣∣ (79)

≤

∣∣∣RY∼Z|X−j ,D∣∣∣+
∣∣∣RY∼Xj |X−jD∣∣∣ ∣∣∣RZ∼Xj |X−j ,D∣∣∣√

1−R2
Y∼Xj |X−jD

√
1−R2

Z∼Xj |X−j ,D

(80)

=

√
kY

∣∣∣RY∼Xj |X−jD∣∣∣+
∣∣∣RY∼Xj |X−jD∣∣∣ ∣∣∣fKD × fD∼Xj |X−j∣∣∣√

1−R2
Y∼Xj |X−jD

√
1− f2KD × f

2
D∼Xj |X−j

(81)

=

√kY +
∣∣∣fKD × fD∼Xj |X−j∣∣∣√

1− f2KD × f
2
D∼Xj |X−j

 |RY∼Xj |X−jD|√
1−R2

Y∼Xj |X−jD

 (82)

= η
∣∣∣fY∼Xj |X−j ,D∣∣∣ . (83)

Hence, we have that,

R2
Y∼Z|D,X ≤ η

2f2Y∼Xj |X−j ,D, (84)

where η =

√
kY +

∣∣∣fKD×fD∼Xj |X−j∣∣∣√
1−f2KD×f

2
D∼Xj |X−j

. Note the bound is tight. Without further assumptions, we can

create an unobserved confounder Z that makes the inequality step in 80 an equality. One can extend
this to multiple covariates by iteratively applying the recursive definition of partial correlation.

C Some numerical examples of informal benchmarking

Here we show how the informal benchmarking practices proposed in Frank (2000); Frank and Min
(2007) and in Carnegie et al. (2016b) could lead users to erroneous conclusions. Starting with
Carnegie et al. (2016b), consider the simulation in the R code presented in the left hand side of
Figure 5. Note the unobserved confounder Z is exactly like X in terms of its association with
the treatment D and the outcome Y ; moreover, we also have that Z ⊥ X. Finally, note that, by
construction, the unobserved confounder Z (which is as strong as X) is sufficient to bring the effect
estimate down to zero. The right hand side of Figure 5 shows the output of Carnegie et al. (2016b)
companion software, the R package treatSens (Carnegie et al. 2016a).28 Note it incorrectly claims
that the effect estimate would be robust to a confounder as strong as X (benchmark shown in the
red “x” mark).

Now moving to Frank (2000) and Frank and Min (2007), one would first compute the “impact
threshold” of a confounding variable and compare this to the “observed” impact of the covariate X.
In the same simulation of Figure 5, these calculation are shown in the last part of the code (using the
R package konfound). One then obtains an impact threshold of 0.469 (considering statistical signifi-
cance of 5%), which, when contrasted with the “observed impact” of X, RY∼X × RD∼X = 0.314,

28As of 14 October 2019, the R package was removed from CRAN for lack of maitainance; archived versions can still
be found in https://cran.r-project.org/web/packages/treatSens/index.html.
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# cleans workspace
rm(list = ls())

# set seed for reproducibility
set.seed(10)

# loads packages
library(treatSens)
library(konfound)

# simulates data
n <- 500
x <- rnorm(n)
z <- rnorm(n)
d <- x + z + rnorm(n)
y <- x + z + rnorm(n)

# Carnegie et al method
sense <- treatSens(y ~ d + x)
sensPlot(sense)

# Frank’s method
model <- lm(y ~ d + x)

## computes impact threshold
konfound(model, tested_variable = "d",

alpha = 0.05)

## "observed impact" of X
cor(x, d)*cor(x, y)

Figure 5: Examples of informal benchmarking.

Note: Code (left) and plot (right) for the incorrect informal benchmark bound produced from the methods of Carnegie,
Harada and Hill (2006). Note the informal benchmark would lead one to incorrectly conclude that an unobserved
confounder Z exactly like X would not be sufficient to explain away the estimated effect, when in fact it would (as
shown in the red “x” mark). Code for Frank (2000) and Frank and Min (2007) is also shown in the left.

would lead an investigator to erroneously conclude that an unobserved confounder as strong as X
would not be sufficient to explain away the effect estimate.
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D Sensitivity tables

Bias Factor table

R2
D∼Z|X/R2

Y∼Z|D,X 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 99%

5% 0.051 0.073 0.089 0.103 0.115 0.126 0.136 0.145 0.154 0.162 0.170 0.178 0.185 0.192 0.199 0.205 0.212 0.218 0.224 0.228
10% 0.075 0.105 0.129 0.149 0.167 0.183 0.197 0.211 0.224 0.236 0.247 0.258 0.269 0.279 0.289 0.298 0.307 0.316 0.325 0.332
15% 0.094 0.133 0.163 0.188 0.210 0.230 0.249 0.266 0.282 0.297 0.312 0.325 0.339 0.351 0.364 0.376 0.387 0.399 0.409 0.418
20% 0.112 0.158 0.194 0.224 0.250 0.274 0.296 0.316 0.335 0.354 0.371 0.387 0.403 0.418 0.433 0.447 0.461 0.474 0.487 0.497
25% 0.129 0.183 0.224 0.258 0.289 0.316 0.342 0.365 0.387 0.408 0.428 0.447 0.465 0.483 0.500 0.516 0.532 0.548 0.563 0.574
30% 0.146 0.207 0.254 0.293 0.327 0.359 0.387 0.414 0.439 0.463 0.486 0.507 0.528 0.548 0.567 0.586 0.604 0.621 0.638 0.651
35% 0.164 0.232 0.284 0.328 0.367 0.402 0.434 0.464 0.492 0.519 0.544 0.568 0.592 0.614 0.635 0.656 0.677 0.696 0.715 0.730
40% 0.183 0.258 0.316 0.365 0.408 0.447 0.483 0.516 0.548 0.577 0.606 0.632 0.658 0.683 0.707 0.730 0.753 0.775 0.796 0.812
45% 0.202 0.286 0.350 0.405 0.452 0.495 0.535 0.572 0.607 0.640 0.671 0.701 0.729 0.757 0.783 0.809 0.834 0.858 0.882 0.900
50% 0.224 0.316 0.387 0.447 0.500 0.548 0.592 0.632 0.671 0.707 0.742 0.775 0.806 0.837 0.866 0.894 0.922 0.949 0.975 0.995
55% 0.247 0.350 0.428 0.494 0.553 0.606 0.654 0.699 0.742 0.782 0.820 0.856 0.891 0.925 0.957 0.989 1.019 1.049 1.078 1.100
60% 0.274 0.387 0.474 0.548 0.612 0.671 0.725 0.775 0.822 0.866 0.908 0.949 0.987 1.025 1.061 1.095 1.129 1.162 1.194 1.219
65% 0.305 0.431 0.528 0.609 0.681 0.746 0.806 0.862 0.914 0.964 1.011 1.056 1.099 1.140 1.180 1.219 1.256 1.293 1.328 1.356
70% 0.342 0.483 0.592 0.683 0.764 0.837 0.904 0.966 1.025 1.080 1.133 1.183 1.232 1.278 1.323 1.366 1.408 1.449 1.489 1.520
75% 0.387 0.548 0.671 0.775 0.866 0.949 1.025 1.095 1.162 1.225 1.285 1.342 1.396 1.449 1.500 1.549 1.597 1.643 1.688 1.723
80% 0.447 0.632 0.775 0.894 1.000 1.095 1.183 1.265 1.342 1.414 1.483 1.549 1.612 1.673 1.732 1.789 1.844 1.897 1.949 1.990
85% 0.532 0.753 0.922 1.065 1.190 1.304 1.408 1.506 1.597 1.683 1.765 1.844 1.919 1.992 2.062 2.129 2.195 2.258 2.320 2.369
90% 0.671 0.949 1.162 1.342 1.500 1.643 1.775 1.897 2.012 2.121 2.225 2.324 2.419 2.510 2.598 2.683 2.766 2.846 2.924 2.985
95% 0.975 1.378 1.688 1.949 2.179 2.387 2.579 2.757 2.924 3.082 3.233 3.376 3.514 3.647 3.775 3.899 4.019 4.135 4.249 4.337
99% 2.225 3.146 3.854 4.450 4.975 5.450 5.886 6.293 6.675 7.036 7.379 7.707 8.022 8.325 8.617 8.899 9.173 9.439 9.698 9.900

Table 2: Bias factor table
Note: To use the bias factor table, first compute the absolute value of the partial (Cohen’s) f of the treatment with the outcome. The partial f can be easily
obtained in most regression tables by dividing the coefficient’s t-value by the square-root of the degrees of freedom, that is, f = t√

df
. To bring down the

estimated effect to zero, the bias factor has to be greater than |f |. In our running example, |f | ≈ 0.15. Looking at the table, we see that the coefficient of
Directly Harmed would be robust to a confounder with, for instance, R2

D∼Z|X = 5% and R2
Y∼Z|D,X = 40%, but would not be robust to a confounder with

R2
D∼Z|X = 40% and R2

Y∼Z|D,X = 5%. To assess the robustness of the coefficient to any change of (100 × q)%, just multiply |f | by q. Any confounder with a
bias factor less than q|f | cannot cause a change of (100× q)% in the regression coefficient.
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