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ABSTRACT

We develop an omitted variable bias framework for sensitivity analysis of instru- 10

mental variable estimates that naturally handles multiple side-effects (violations of
the exclusion restriction assumption) and confounders (violations of the ignorabil-
ity of the instrument assumption) of the instrument, exploits expert knowledge to
bound sensitivity parameters, and can be easily implemented with standard soft-
ware. Specifically, we introduce sensitivity statistics for routine reporting, such as 15

(extreme) robustness values for instrumental variables, describing the minimum
strength that omitted variables need to have to change the conclusions of a study.
Next we provide visual displays that fully characterize the sensitivity of point es-
timates and confidence intervals to violations of the standard instrumental variable
assumptions. Finally, we offer formal bounds on the worst possible bias under the 20

assumption that the maximum explanatory power of omitted variables is no stronger
than a multiple of the explanatory power of observed variables. Conveniently, many
pivotal conclusions regarding the sensitivity of the instrumental variable estimate
(e.g. tests against the null hypothesis of zero causal effect) can be reached simply
through separate sensitivity analyses of the effect of the instrument on the treatment 25

(the first stage) and the effect of the instrument on the outcome (the reduced form).
We apply our methods in a running example that uses proximity to college as an
instrumental variable to estimate the returns to schooling.

Some key words: Instrumental Variables; Omitted Variable Bias; Sensitivity Analysis; Robustness Values.

1. INTRODUCTION 30

Unobserved confounding often complicates efforts to make causal claims from observational
data (e.g. Pearl, 2009; Imbens and Rubin, 2015). Instrumental variable (IV) regression offers
a powerful and widely used tool to address unobserved confounding, by exploiting exogenous
sources of variation of the treatment (e.g. Angrist et al., 1996; Angrist and Pischke, 2009). IV
methods are “a central part of the econometrics canon since the first half of the twentieth cen- 35

tury” (Imbens, 2014, p.324), and, beyond economics, are now prominent tools in the arsenal of
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investigators seeking to make causal claims across the social sciences, epidemiology, medicine,
genetics, and other fields (see e.g. Hernán and Robins, 2006; Burgess and Thompson, 2015).

Yet, instrumental variable methods carry their own set of demanding assumptions. Principally,
conditionally on certain observed covariates, an instrumental variable must not be confounded40

with the outcome, and it should influence the outcome only by affecting uptake of the treatment.
In recent literature, the first assumption is usually called exogeneity, ignorability, or unconfound-
edness of the instrument, whereas the second assumption is called the exclusion restriction (An-
grist and Pischke, 2009; Imbens and Rubin, 2015). These assumptions can be violated by omitted
confounders of the instrument-outcome association, and by omitted side-effects of the instrument45

that influence the outcome via paths other than through the treatment. Although in certain cases
such assumptions may entail testable implications (Pearl, 1995; Gunsilius, 2020; Kédagni and
Mourifié, 2020), they are often unverifiable and must be defended by appealing to domain knowl-
edge. Whether a given IV study identifies the causal effect of interest, then, turns on debates as
to whether these assumptions hold.50

Particularly in recent years, economists and other scholars have adopted a more skeptical pos-
ture towards instrumental variable methods, emphasizing the importance of both defending the
credibility of these assumptions as well as assessing the consequences of their failures (e.g.,
Deaton, 2009; Heckman and Urzua, 2010). Extensive reviews of many widely-used instrumental
variables have catalogued several plausible violations of the exclusion restriction for such instru-55

ments (e.g Gallen, 2020; Mellon, 2020). More worrisome, if traditional assumptions fail to hold,
it is well known that the bias of the IV estimate may be worse than the original confounding bias
of the simple regression estimate (Bound et al., 1995). Therefore, researchers are also advised to
perform sensitivity analyses to assess the degree of violation of the IV assumptions that would
be required to alter the conclusions of a study.60

While a number of sensitivity analyses for instrumental variables have been proposed (e.g.,
Small, 2007; Small and Rosenbaum, 2008; Conley et al., 2012; Wang et al., 2018; Cinelli et al.,
2019; Masten and Poirier, 2021), they have rarely been employed in practice. For example, in
economics, only 1 out of 27 papers using instrumental variables, published in the American
Economic Review in 2020, performed formal sensitivity analysis to unobserved variables. In65

political science, this number was 1 out of 12 papers across the top three general interest journals
in 2019 (Cinelli and Hazlett, 2020). In Sociology, none of the 34 papers published between
2004 and 2022 in the American Journal of Sociology and the American Sociology Review did so
(Felton and Stewart, 2022). Note that sensitivity to unobserved variables is distinct from (though
related to) sensitivity to analytical choices of the investigator, which is more commonly found in70

the applied literature; these include, for example, sensitivity to different estimators, the presence
of outliers, effect heterogeneity, or covariate selection (see, Blundell et al., 2001; Belzil and
Hansen, 2002; Jaeger and Parys, 2009 for examples applied to returns to education).

We suggest several reasons for this slow uptake. First, the traditional approach for sensitivity
analysis of instrumental variable estimates has focused on parameterizing violations of the IV75

assumptions with a single parameter summarizing the overall bias in the association of the in-
strument with the outcome. While this parameterization may be well-suited when the bias is only
due to the direct effect of the instrument on the outcome (not through the treatment), it is not as
straightforward to use when reasoning about multiple side-effects or confounders of the instru-
ment, in which case that sensitivity parameter is a complicated composite of many sources of80

bias (see Supplementary Material for a comparison of our proposal with traditional approaches).
Second, while users of IV methods are instructed to routinely report quantities to diagnose cer-
tain inferential problems such as “weak instruments” (e.g. the F-statistic, Stock and Yogo, 2002),
we lack sensitivity statistics that can quickly communicate how robust a study is to violations in
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the form of omitted confounders or side-effects of the instrument. Additionally, it is often diffi- 85

cult to connect the formal results of a sensitivity analysis to a cogent argument about what types
of biases can be ruled out by expert knowledge.

In this paper, we develop an omitted variable bias (OVB) framework for assessing the sen-
sitivity of IV estimates that aims to address these challenges. Building on the Anderson-Rubin
approach (Anderson and Rubin, 1949) and on recent developments of OVB for ordinary least 90

squares (OLS) (Cinelli and Hazlett, 2020), we develop a simple suite of sensitivity analysis tools
for IV that: (i) naturally handles violations due to multiple side-effects and confounders, possibly
acting non-linearly; (ii) is well suited for routine reporting; and (iii) exploits expert knowledge to
bound sensitivity parameters. (Here we focus on the just-identified case of one treatment and one
instrument for two reasons. First, examining violations of identification assumptions is already 95

challenging enough with a single instrument (Angrist and Pischke, 2009). Second, most applied
work falls into this category: for instance, Young (2022) finds that 80% of instrumental variable
regressions in the American Economic Review and 15 other journals of the American Economic
Association used a single instrument. Even in multiple-instrument studies, it is not uncommon
for researchers to report and give special focus to their best single instrument.) 100

Specifically, we introduce two main sensitivity statistics for instrumental variable estimates:
(i) the robustness value describes the minimum strength of association (in terms of partial R2)
that omitted variables (side-effects or confounders) need to have, both with the instrument and
with the outcome, in order to change the conclusions of the study; and (ii) the extreme robust-
ness value, which describes the minimal strength of association that omitted variables need to 105

have with the instrument alone in order to be problematic. Routine reporting of these quantities
provides a quick and simple way to improve the transparency and facilitate the assessment of
the credibility of IV studies. Next, we offer intuitive graphical tools for investigators to assess
how postulated confounding of any degree would alter hypothesis tests, as well as lower or up-
per limits of confidence intervals. These tools can be supplemented with formal bounds on the 110

worst possible bias that side-effects or confounders could cause, under the assumption that the
maximum explanatory power of these omitted variables is no stronger than a chosen multiple of
the explanatory power of observed variables.

A final contribution of this paper is the proposal of a novel bias-adjusted critical value that
accounts for a postulated degree of omitted variable bias. Notably, this correction on the critical 115

value does not depend on the observed data, and can be computed by simply postulating a hy-
pothetical partial R2 of the omitted variables with the dependent and independent variables of
the regression. Applied researchers can thus quickly and easily perform sensitivity analysis by
simply substituting traditional thresholds with bias-adjusted thresholds, when testing a particular
null hypothesis, or when constructing confidence intervals. All proofs and details can be found 120

in the Supplementary Material. Open-source software for R implements the methods discussed
in this paper: https://github.com/carloscinelli/iv.sensemakr.

2. BACKGROUND AND RUNNING EXAMPLE

2.1. Ordinary least squares and the omitted variable bias problem
Many observational studies have established a positive and large association between educa- 125

tional achievement and earnings using regression analysis. Here we consider the work of Card
(1993), which employed a sample of n = 3, 010 individuals from the National Longitudinal Sur-
vey of Young Men.

Considering the following multiple linear regression Y = τ̂OLS,resD +Xβ̂OLS,res + ε̂OLS,res,
where Y denotes Earnings and measures the log transformed hourly wages of the individual, D 130

https://github.com/carloscinelli/iv.sensemakr
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denotes Education and consists of an integer-valued variable indicating the completed years of
education of the individual, and the matrix X comprises race, experience, and a set of regional
factors, Card concluded that each additional year of schooling was associated with approximately
7.5% higher wages.

Educational achievement, however, is not randomly assigned; perhaps individuals who obtain135

more education have higher wages for other reasons, such as family background, or higher levels
of some other unobserved characteristic such as Ability or Motivation. If data on these variables
were available, then further adjustment for such variables would capture the causal effect of ed-
ucational attainment on schooling, as in Y = τ̂OLSD +Xβ̂OLS +U γ̂OLS + ε̂OLS, where U is a
set of variables that, along with X , eliminates confounding concerns (if the treatment effect is140

heterogeneous, this may affect the causal interpretation of τOLS, see, e.g. Angrist and Pischke,
2009). Unfortunately, such detailed information on individuals is not available, and researchers
may not agree on which variables U are needed. Regression estimates that adjust for only a
partial list of characteristics (such as X) may suffer from omitted variable bias, likely overesti-
mating the true returns to schooling.145

2.2. Instrumental variables as a solution to the omitted variable bias problem
Instrumental variable methods offer an alternative route to estimate the causal effect of school-

ing on earnings without having data on the unobserved variables U . The key for such methods
to work is to find a new variable (the instrument) that changes the incentives to educational
achievement, but is associated with earnings only through its effect on education. To that end,150

Card (1993) proposed exploiting the role of geographic differences in college accessibility. In
particular, consider the variable Proximity, encoding an indicator of whether the individual grew
up in an area with a nearby accredited 4-year college, which we denote by Z. Students who
grow up far from the nearest college may face higher educational costs, discouraging them from
pursuing higher level studies. Next, and most importantly, Card (1993) argues that, conditional155

on the set of observed variables X , whether one lives near a college is not itself confounded
with earnings, nor does proximity to college affect earnings apart from its effect on years of
education. If we believe such assumptions hold it is possible to recover a valid estimate of the
(weigthed average of local) average treatment effect(s) of Education on Earnings by simply tak-
ing the ratio of two OLS coefficients, one measuring the effect of Proximity on Earnings, and160

another measuring the effect of Proximity on Education, as in the two regression models

First Stage: D = θ̂resZ +Xψ̂res + ε̂d,res, (1)

Reduced Form: Y = λ̂resZ +Xβ̂res + ε̂y,res. (2)

Throughout the paper we refer to these equations as the first stage (1) and the reduced form (2),
as these are now common usage (Angrist and Pischke, 2009; Imbens and Rubin, 2015; Andrews165

et al., 2019). The coefficient for Proximity (Z) on the first-stage regression reveals that those
who grew up near a college indeed have higher educational attainment, having completed an
additional 0.32 years of education, on average. Likewise, the coefficient for Proximity (Z) on
the reduced-form regression suggests that those who grew up near a college have 4.2% higher
earnings. The IV estimate is then given by the ratio, τ̂res := λ̂res/θ̂res ≈ 0.042/0.319 ≈ 0.132.170

The value of τ̂res ≈ 0.132 suggests that, contrary to the OLS estimate of 7.5%, and perhaps sur-
prisingly, each additional year of schooling instead raises wages by much more—13.2%. (Con-
ditions that allow a causal interpretation of the traditional IV estimand are extensively discussed
elsewhere and will not be reviewed here, see Angrist et al. (1996); Angrist and Pischke (2009);
Swanson et al. (2018); Słoczyński (2020) and Blandhol et al. (2022). See also Section 6.)175
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The ratio λ̂res/θ̂res is sometimes called the indirect least squares estimator. Inference in this
framework is usually performed using the delta-method. A closely related approach is denoted
by two-stage least squares, in which one saves the predictions of the first-stage regression, and
then regress the outcome on these fitted values. By the Frisch-Waugh-Lovell (FWL) theorem
(Frisch and Waugh, 1933; Lovell, 1963) one can readily show that two-stage least squares and 180

indirect least squares yield numerically identical estimates and standard errors.

2.3. Anderson-Rubin regression, Fieller’s theorem and weak instruments
Inference using the previous methods may prove unreliable when the first-stage coefficient is

too close to zero relative to the sampling variability of its estimator. This is known as the “weak
instrument” problem. The Anderson-Rubin regression (Anderson and Rubin, 1949) provides one 185

approach to constructing confidence intervals with correct coverage, regardless of the strength of
the first stage. Additionally, it also yields the uniformly most powerful unbiased test under this
setup (Moreira, 2009).

The approach starts by creating the random variable Yτ0 := Y − τ0D in which we subtract
from Y a putative causal effect of D, namely, τ0. If Z is a valid instrument, under the null 190

hypothesis H0 : τ = τ0, we should not see an association between Yτ0 and Z, conditional on X .
In other words, if we run the regression

Anderson-Rubin: Yτ0 = φ̂τ0,resZ +Xβ̂τ0,res + ε̂τ0,res, (3)

we should find that φ̂τ0,res is equal to zero, but for sampling variation. To test the null hypothesis
H0 : φτ0,res = 0 in the Anderson-Rubin regression is thus equivalent to test the null hypothesis 195

H0 : τ = τ0. The 1− α confidence interval is constructed by collecting all values τ0 such that the
null hypothesis H0 : φτ0,res = 0 is not rejected at the chosen significance level α. This approach
is numerically identical to Fieller’s theorem (Fieller, 1954). It is convenient to define the point
estimate τ̂AR,res as the value τ0 which makes φ̂τ0,res exactly equal to zero. By the FWL theorem,
we can easily show that τ̂AR,res is also numerically identical to the indirect least squares and 200

two-stage least squares estimates.
The literature on weak instruments is extensive (see, e.g., Nelson and Startz, 1990; Staiger and

Stock, 1994; Kleibergen, 2002; Moreira, 2003, 2009; Andrews et al., 2019), and users are rou-
tinely advised to report diagnostic measures (e.g. the F-statistic of the first stage). It is important
to note, however, that sensitivity to unobserved confounders or side-effects is distinct from issues 205

posed by weak instruments. In particular, the latter depends on sample size, whereas the former
does not. Thus, instruments deemed “strong” by conventional statistics may still be fragile in the
face of unobserved variables—see Remark 4.

2.4. The instrumental variable estimate may still suffer from omitted variable bias
The previous instrumental variable estimate relies on the assumption that, conditional on X , 210

Proximity and Earnings are unconfounded, and the effect of Proximity on Earnings must go en-
tirely through Education. As is often the case, neither assumption is easy to defend. First, the
same factors that might confound the relationship between Education and Earnings could sim-
ilarly confound the relationship of Proximity and Earnings (e.g. family wealth or connections).
Second, as argued in Card (1993), the presence of a college nearby may be associated with high 215

school quality, which in turn also affects earnings. Finally, other geographic confounders can
make some localities likely to both have colleges nearby and lead to higher earnings. These are
only coarsely conditioned on by the observed regional indicators, and residual biases may still
remain.
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Therefore, instead of adjusting for X only, as in the previous regressions, we should have220

adjusted for both the observed covariates X and unobserved covariates W as in

First Stage: D = θ̂Z +Xψ̂ +W δ̂ + ε̂d, (4)

Reduced Form: Y = λ̂Z +Xβ̂ +W γ̂ + ε̂y, (5)

Anderson-Rubin: Yτ0 = φ̂τ0Z +Xβ̂τ0 +W γ̂τ0 + ε̂τ0 , (6)

where W stands for all unobserved factors necessary to make Proximity a valid instrument for225

the effect of Education on Earnings. See Supplementary Material for canonical causal diagrams
illustrating settings in which {X,W } renders Z a valid instrument for the effect of D and Y ;
equivalent assumptions can be articulated in the potential outcomes framework (Angrist et al.,
1996; Pearl, 2009; Swanson et al., 2018).

2.5. Problem statement230

Our task is to characterize how instrumental variable estimates, as given by the OLS regres-
sions in (4)-(6), would have changed due to the inclusion of omitted variables W . As such, we
should be able to leverage sensitivity analysis tools for OLS to examine the sensitivity of IV. The
next section thus extends and refines several results for the sensitivity analysis of arbitrary OLS
estimates. These results are not only useful on their own right, but, importantly, they will later235

be applied to the development of a suite sensitivity analysis tools for instrumental variables in
Section 4. Finally, throughout the paper, we impose the following regularity condition.

Assumption 1 (Full Rank). The matrices of independent variables in (4)-(6) have full rank.

This ensures all relevant quantities discussed below are finite.

3. EXTENSIONS TO THE OMITTED VARIABLE BIAS FRAMEWORK FOR OLS240

3.1. Preliminaries
We start by briefly establishing key ideas, formulae, and notation from prior work (Cinelli and

Hazlett, 2020). For concreteness, in this section we discuss the omitted variable bias framework
in the context of the reduced-form regression. Readers should keep in mind, however, that all
results presented here hold for arbitrary OLS estimates—including, but not limited to, the first245

stage and the Anderson-Rubin regression. The logical implications of the sensitivity of these
auxiliary regressions for the sensitivity of IV itself are deferred to Section 4.

Consider the regression coefficient estimate λ̂ and the classical (i.e, homoskedastic) standard
error estimate ŝe(λ̂) of Equation (5), namely, the regression of the outcome Y on the instrument
Z, adjusting for a set of observed covariates X and (for now) a single unobserved covariate W250

(we generalize to multivariateW below). Here Y , Z andW are (n× 1) vectors, X is an (n× p)
matrix (including a constant), with n observations; λ̂, β̂ and γ̂ are the regression coefficient esti-
mates and ε̂y the corresponding residuals. AsW is unobserved, the investigator instead estimates
the restricted model of Equation (2) where λ̂res and β̂res are the coefficients adjusting for Z and
X alone, and ε̂y,res the corresponding residuals. The omitted variable bias framework seeks to255

answer the following question: how do the estimates from the restricted model compare with the
estimates from the full model?

Let R2
Y∼W |Z,X denote the (sample) partial R2 of W with Y , after controlling for Z and X ,

and let R2
Z∼W |X denote the partial R2 of W with Z after adjusting for X . It is also useful to
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define Cohen’s partial f2, e.g, f2Z∼W |X :=
R2
Z∼W |X

1−R2
Z∼W |X

which will appear frequently through- 260

out derivations. Given the point estimate and (estimated) standard error of the restricted model
actually run, λ̂res and ŝe(λ̂res), these two R2 values are sufficient to recover λ̂ and ŝe(λ̂).

THEOREM 1 (OVB IN THE PARTIAL R2 PARAMETERIZATION). Under Assumption 1, the
absolute difference between the restricted and full OLS estimates is given by,

|λ̂res − λ̂| =
√
R2
Y∼W |Z,Xf

2
Z∼W |X︸ ︷︷ ︸

BF

×sd(Y ⊥X,Z)

sd(Z⊥X)
; (7) 265

moreover, the (classical) standard error of the full OLS estimate is given by

ŝe(λ̂) =

√√√√1−R2
Y∼W |Z,X

1−R2
Z∼W |X︸ ︷︷ ︸

SEF

×sd(Y ⊥X,Z)

sd(Z⊥X)
×
√

1

df −1
, (8)

where sd(Y ⊥X,Z) is the (sample) residual standard deviation of Y after removing the part lin-
early explained by {X, Z}, sd(Z⊥X) is the (sample) residual standard deviation of Z after
removing the part linearly explained by X , and df = n− p− 1 is the residual degrees of free- 270

dom from the restricted model (2). To aid interpretation, we call the term BF in (7) the “bias
factor” of W , and the term SEF in (8) the “standard error factor” of W .

For simplicity of exposition, throughout the text we usually refer to a single omitted vari-
able W . These results, however, can be used for performing sensitivity analyses considering
multiple omitted variables W = [W1,W2, . . . ,Wl], and thus also non-linearities and functional 275

form misspecification of observed variables. In such cases, barring an adjustment in the degrees
of freedom, the equations are conservative, and reveal the maximum bias a multivariate W with
such pair of partial R2 values could cause (Cinelli and Hazlett, 2020, Sec. 4.5).

Note Theorem 1 is stated in terms of sample estimates. All results presented in this paper are of
this type: they are exact algebraic results of how traditional OLS coefficients and standard error 280

estimates change due to the inclusion of omitted variables. Conditions under which traditional
estimates yield valid inferences are well-known and thus omitted.

3.2. Bias-adjusted critical values
We now introduce a novel correction to traditional critical values that researchers can use to

account for omitted variable bias. Let t∗α,df −1 > 0 denote the (absolute value of) the critical value 285

for a standard t-test with significance level α and df −1 degrees of freedom. Now let LL1−α(λ)
be the lower limit and UL1−α(λ) be the upper limit of a 1− α confidence interval for λ in the
full model, i.e.,

LL1−α(λ) := λ̂− t∗α,df −1 × ŝe(λ̂), UL1−α(λ) := λ̂+ t∗α,df −1 × ŝe(λ̂). (9)

Considering the worst-case direction of the bias that further reduces the lower limit (or increases 290

the upper limit) in (9), Equations (7) and (8) of Theorem 1 imply that both quantities can be
written as a function of the restricted estimates and a new multiplier.
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THEOREM 2 (BIAS ADJUSTED CRITICAL VALUE). Under Assumption 1, for given R2 =
{R2

Y∼W |Z,X , R
2
Z∼W |X}, and α, consider the direction of the bias that reduces LL1−α(λ). Then

LL1−α(λ) = λ̂res − t†α,df −1,R2 × ŝe(λ̂res). (10)295

Conversely, considering the direction of the bias that increases UL1−α(λ), we have

UL1−α(λ) = λ̂res + t†
α,df −1,R2 × ŝe(λ̂res). (11)

Here t†
α,df −1,R2 denotes the bias-adjusted critical value

t†
α,df −1,R2 := SEF

√
df /(df −1)× t∗α,df −1 + BF

√
df, (12)

where BF and SEF are the bias and standard error factors of Theorem 1.300

As the subscript R2 = {R2
Y∼W |Z,X , R

2
Z∼W |X} conveys, t†

α,df −1,R2 depends on both sensitivity
parameters. Notably, this correction does not depend on the observed data, but for the degrees
of freedom. In other words, the bias correction is a function of the strength of unobserved con-
founding and the sample size alone. This allows one to quickly assess the robustness of reported
findings to omitted variables of any postulated strength R2, by simply comparing the reported305

t-statistic with the desired adjusted critical value, even without access to the original data.

Example 1. It is instructive to consider the case in which the omitted variable W has equal
strength of association with Y and Z, i.e, R2

Y∼W |Z,X = R2
Z∼W |X = R2. We then have that

SEF = 1 and BF = R2/
√
1−R2 resulting in a very simple correction formula,

t†
α,df −1,R2 ≈ t∗α,df −1 +

R2

√
1−R2

√
df, (13)310

where we employ the approximation
√

df/(df− 1) ≈ 1. Table 1 shows the adjusted critical val-
ues for this case, considering different strengths of the omitted variable and various sample sizes.

R2 Degrees of Freedom (sample size)
100 1,000 10,000 100,000 1,000,000

0.00 1.98 1.96 1.96 1.96 1.96
0.01 2.08 2.28 2.97 5.14 12.01
0.02 2.19 2.60 3.98 8.35 22.16
0.03 2.29 2.92 5.01 11.59 32.42
0.04 2.39 3.25 6.04 14.87 42.78
0.05 2.50 3.58 7.09 18.18 53.26

Table 1: Bias-adjusted critical values, t†
α,df −1,R2,R2 , for different strengths of the omitted vari-

able W (with R2
Y∼W |Z,X = R2

Z∼W |X = R2) and various sample sizes; α = 5%.

Tests using these new critical values account both for sampling uncertainty and residual biases
with the postulated strength. Note t†

α,df −1,R2 increases the larger the sample size. This behaviour
is simply a consequence of the well-known, but often overlooked fact that in large samples any315

signal will eventually be detected, even if it is spurious. Thus, as the sample size grows, a higher
threshold is needed in order to protect inferences against systematic biases.
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We note Table 1 picks R2
Y∼W |Z,X = R2

Z∼W |X = R2 for illustrative purposes only. Re-
searchers can construct bias-adjusted critical values for any arbitrary pair ofR2 values—see, e.g,
Supplementary Material for 2× 2 tables of t†

α,df −1,R2 where both R2
Y∼W |Z,X and R2

Z∼W |X are 320

varied simultaneously.

Remark 1. Sensitivity analysis cannot reveal the strength of confounding present, only the
strength of confounding required to alter a research conclusion. For instance, Table 1 reveals that
in a study with 1 million observations, one needs a t-value of at least 12 in order to guarantee
that the results are robust to latent variables that explain 1% of the residual variation both of the 325

dependent and independent variables. The table also tells us that any study with a t-value less
than 12 is vulnerable to such biases. The table does not tell us whether latent variables with such
strength do exist in any particular study—this needs to be adjudicated using expert knowledge.
Note, however, that knowing what one needs to know is useful, and represents an improvement
over conventional analysis, which assumes R2 = 0. See Section 6 for additional discussion. 330

3.3. Compatible inferences given bounds on partial R2

Given hypothetical values for R2
Y∼W |Z,X and R2

Z∼W |X , the previous results allow us to de-
termine exactly how the inclusion of W with such strength would change inference regarding
the parameter of interest. Often, however, the analyst does not know the exact strength of omit-
ted variables, and wishes to investigate the worst possible inferences that could be induced by 335

a W with bounded strength, for instance, R2
Y∼W |Z,X ≤ R

2max
Y∼W |Z,X and R2

Z∼W |X ≤ R
2max
Z∼W |X .

Writing t†
α,df −1,R2 as a function of the sensitivity parametersR2

Y∼W |Z,X andR2
Z∼W |X , we then

solve the maximization problem,

max
R2
Y∼W |Z,X ,R2

Z∼W |X

t†
α,df −1,R2 s.t. R2

Y∼W |Z,X ≤ R
2max
Y∼W |Z,X , R

2
Z∼W |X ≤ R

2max
Z∼W |X . (14)

Denoting the solution to the optimization problem in expression (14) as t†max
α,df −1,R2 , we obtain 340

the maximum bias-adjusted critical value.

THEOREM 3 (MAXIMUM BIAS-ADJUSTED CRITICAL VALUE). Fix α, R2max
Y∼W |Z,X and

R2max
Z∼W |X < 1 in the optimization problem (14). Then,

t†max
α,df −1,R2 = t†

α,df −1,R2∗ ,

with R2∗ = {R2max
Y∼W |Z,X , R2max

Z∼W |X} if R2max
Z∼W |X ≥ f

∗2
α,df−1f

2max
Y∼W |Z,X , and 345

R2∗ = {R2max
Z∼W |X/(f

∗2
α,df−1 +R2max

Z∼W |X), R2max
Z∼W |X} otherwise, where here we define

f∗α,df −1 := t∗α,df −1/
√
df −1.

Once in possession of t†max
α,df −1,R2 , the most extreme possible lower and upper limits of confi-

dence intervals after adjusting for W are then given by

LLmax
1−α,R2(λ) = λ̂res − t†max

α,df −1,R2 × ŝe(λ̂res), ULmax
1−α,R2 = λ̂res + t†max

α,df −1,R2 × ŝe(λ̂res). 350

The interval composed of such limits,

CImax
1−α,R2(λ) :=

[
LLmax

1−α,R2(λ), ULmax
1−α,R2(λ)

]
, (15)

retrieves the union of all confidence intervals for λ that are compatible with an omitted variable
with such strengths.
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Widespread adoption of sensitivity analysis benefits from simple and interpretable statistics355

that quickly convey the overall robustness of an estimate. To that end, Cinelli and Hazlett (2020)
proposed two sensitivity statistics for routine reporting: (i) the partial R2 of Z with Y , R2

Y∼Z|X ;
and, (ii) the robustness value (RV). In what follows, we generalize the notion of a partial R2 as a
measure of robustness to extreme scenarios, by introducing the extreme robustness value (XRV),
for which the partialR2 is a special case. We also recast these sensitivity statistics as a solution to360

an “inverse” question regarding the interval CImax
1−α,R2(λ). This framework facilitates extending

these metrics to other contexts, in particular to the IV setting in Section 4.

3.4. The extreme robustness value
Our first inverse question is: what is the bare minimum strength of association of the omitted

variable W with Z that could bring its estimated coefficient to a region where it is no longer365

statistically different than zero (or another threshold of interest)? To answer this question, we
can see CImax

1−α,R2(λ) as a function of the bound R2max
Z∼W |X alone, obtained from maximizing the

adjusted critical value in expression (14) where: (i) the parameter R2
Y∼W |Z,X is left completely

unconstrained (i.e, R2
Y∼W |Z,X ≤ 1); and, (ii) the parameter R2

Z∼W |X is bounded by XRV (i.e,
R2max
Z∼W |X ≤ XRV). The Extreme Robustness Value XRVq∗,α(λ) is defined as the greatest lower370

bound XRV such that the null hypothesis that a change of (100× q∗)% of the original estimate,
H0 : λ = (1− q∗)λ̂res, is not rejected at the α level,

XRVq∗,α(λ) := inf
{
XRV; (1− q∗)λ̂res ∈ CImax

1−α,1,XRV(λ)
}
. (16)

The solution to this problem gives the following result.

THEOREM 4 (EXTREME ROBUSTNESS VALUE—OLS). Under Assumption 1, for given q∗375

and α, the extreme robustness value equals

XRVq∗,α(λ) =


0, if fq∗(λ) ≤ f∗α,df−1,

f2q∗(λ)− f∗2α,df−1
1 + f2q∗(λ)

, otherwise,

where fq∗(λ) := q∗|fY∼Z|X |, and f∗α,df −1 := t∗α,df −1/
√
df −1.

Remark 2. Beyond its procedural interpretation, XRVq∗,α(λ) can also be interpreted as an
“adjusted partial R2” of Z with Y . To see why, consider the case of the minimal strength to380

bring the point estimate (α = 1) to exactly zero (q∗ = 1). We then have that f∗α=1,df −1 = 0

and f2q∗=1(λ) = f2Y∼Z|X , resulting in XRVq∗=1,α=1(λ) =
f2
Y∼Z|X

1+f2
Y∼Z|X

= R2
Y∼Z|X . For the gen-

eral case, we simply perform two adjustments that dampens the “raw” partial R2 of Z
with Y . First we adjust it by the proportion of reduction deemed to be problematic q∗ through
fq∗ = q∗|fY∼Z|X |; next, we subtract the threshold for which statistical significance is lost.385

3.5. The robustness value
An alternative measure of robustness of the OLS estimate is to consider the minimal strength

of association that the omitted variable needs to have, both with Z and Y , so that a 1− α confi-
dence interval for λwill include a change of (100× q∗)% of the current restricted estimate. Write
CImax

1−α,R2(λ) as a function of both bounds varying simultaneously, CImax
1−α,RV,RV(λ), by maximiz-390

ing the adjusted critical value with bounds given by R2
Y∼W |Z,X ≤ RV and R2

Z∼W |X ≤ RV.
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The Robustness Value RVq∗,α(λ) for not rejecting the null hypothesis thatH0 : λ = (1− q∗)λ̂res,
at the significance level α, is defined as

RVq∗,α(λ) := inf
{
RV; (1− q∗)λ̂res ∈ CImax

1−α,RV,RV(λ)
}
. (17)

The RV of OLS estimates has then the following characterization. 395

THEOREM 5 (ROBUSTNESS VALUE—OLS). Under Assumption 1, for given q∗ and α, the
robustness value equals

RVq∗,α(λ) =


0, if fq∗(λ) ≤ f∗α,df−1,
1

2

(√
f4q∗,α(λ) + 4f2q∗,α(λ)− f

2
q∗,α(λ)

)
, if f∗α,df−1 < fq∗(λ) < f∗−1α,df−1,

XRVq∗,α(λ), otherwise,

where fq∗,α(λ) := q∗|fY∼Z|X | − f∗α,df −1, and f∗α,df −1 := t∗α,df −1/
√
df −1.

The first case occurs when the confidence interval already includes (1− q∗)λ̂res or the mere 400

change of one degree of freedom achieves this. In the second case, both associations of W reach
the bound (here, when the f statistic is very large, it may be numerically convenient to use the
equivalent expression 2/

(
1 +

√
1 + 4/f2q∗,α(λ)

)
which avoids catastrophic cancellations). The

last case is an interior point solution—when the constraint on the partial R2 with the outcome is
not binding, the RV reduces to the XRV. 405

3.6. Bounding the plausible strength of omitted variables
One final result is required before turning to the sensitivity of instrumental variables. Let Xj

be a specific covariate of the set X , and define

kZ :=
R2
Z∼W |X−j

R2
Z∼Xj |X−j

, kY :=
R2
Y∼W |Z,X−j

R2
Y∼Xj |ZX−j

, (18)

where X−j represents the vector of covariates X excluding Xj . These new parameters, kZ and 410

kY , stand for how much “stronger” W is relatively to the observed covariate Xj in terms of
residual variation explained of Z and Y . Our goal in this section is to re-express (or bound)
the sensitivity parameters R2

Z∼W |X and R2
Y∼W |Z,X in terms of the relative strength parameters

kZ and kY . Cinelli and Hazlett (2020) derived bounds considering the part of W not linearly
explained by X . These are particularly useful when contemplating Xj and W both confounders 415

of Z (violations of the ignorability of the instrument). In the IV setting, however,W andXj may
be side-effects of Z, instead of causes of Z. In such cases, it may be more natural to reason about
the orthogonality of X and W after conditioning on Z. Therefore, here we additionally provide
bounds under the condition R2

W∼Xj |Z,X−j = 0.

THEOREM 6 (RELATIVE BOUNDS ON THE STRENGTH OF W ). Under Assumption 1, for 420

fixed kZ and kY as defined in (18), if R2
W∼Xj |Z,X−j = 0 then

R2
Z∼W |X ≤ η

2f2Z∼Xj |X−j , R2
Y∼W |Z,X = kY f

2
Y∼Xj |Z,X−j , (19)

where, η =

√kZ+∣∣∣R3
Z∼Xj |X−j

∣∣∣√
1−kZR4

Z∼Xj |X−j

.
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These results allow investigators to leverage knowledge of relative importance of variables
(Kruskal and Majors, 1989) when making plausibility judgments regarding sensitivity param-425

eters, by setting R2max
Y∼W |Z,X = kY f

2
Y∼Xj |Z,X−j , R

2max
Z∼W |X = ηf2Z∼Xj |X−j in CImax

1−α,R2(λ).

4. AN OMITTED VARIABLE BIAS FRAMEWORK FOR THE SENSITIVITY OF IV
4.1. A suite of sensitivity analysis tools for instrumental variables

We are now ready to develop a suite of sensitivity analysis tools for instrumental variable
regression. In what follows, we first show how separate sensitivity analysis of the reduced form430

and first stage is sufficient to draw many valuable conclusions regarding the sensitivity of the
instrumental variable estimate. We then construct a complete omitted variable bias framework
for sensitivity analysis of instrumental variables within the Anderson-Rubin approach.

4.2. What can be learned from the reduced form and first stage?
The critical examination of the first stage and the reduced form plays an important role for435

supporting the causal story behind a particular instrumental variable (Angrist and Krueger, 2001;
Angrist and Pischke, 2009; Imbens, 2014). While investigating these separate regressions, all
sensitivity analysis results discussed in the previous section can be readily deployed. Fortunately,
such sensitivity analyses also answer many pivotal questions regarding the IV estimate itself.
First, if the investigator is interested in assessing the strength of confounders or side-effects440

needed to bring the effect estimate to zero, or to not reject the null hypothesis of zero effect, the
results of the sensitivity analysis of the reduced form is all that is needed. Second, the sensitivity
of the first stage (to confounding that could change its sign) reveals whether the IV estimate
could be arbitrarily large in either direction (in the context of randomization inference, similar
observations have been noted by Imbens and Rosenbaum, 2005; Small and Rosenbaum, 2008;445

Keele et al., 2017). We elaborate on these claims below.
Starting with the point estimate, all estimators under consideration here equal to the ratio of

the reduced-form and the first-stage regression coefficients, τ̂ := λ̂/θ̂. This simple algebraic fact
leads to two immediate and practically important conclusions regarding the sensitivity of τ̂ from
the sensitivity of λ̂ and θ̂ alone. First, residual biases can bring the IV point estimate to zero450

if and only if they can bring the reduced-form point estimate to zero. Therefore, if sensitivity
analysis of the reduced form reveals that omitted variables are not strong enough to explain away
λ̂, then they also cannot explain away τ̂ . Or, more worrisome, if analysis reveals that it takes
weak confounding or side-effects to explain away λ̂, the same holds for τ̂ . Second, if we cannot
rule out confounders or side-effects able to change the sign of the first stage, we cannot rule out455

that τ̂ could be arbitrarily large in either direction. This can be immediately seen by letting θ̂
approach zero on either side of the limit. Thus, whenever we are interested in biases as large or
larger than a certain amount, the robustness of the first stage to the zero null puts an upper bound
on the robustness of the IV point estimate.

Moving to inferential concerns, the Anderson-Rubin test for the null hypothesisH0 : τ = τ0 is460

based on the test of H0 : φτ0 = 0. By the FWL theorem, the point estimate and (estimated) stan-
dard error for φ̂τ0 can be expressed in terms of the first-stage and reduced-form estimates, namely,

φ̂τ0 = λ̂− τ0θ̂ and, ŝe(φ̂τ0) =
√

v̂ar(λ̂) + τ20 v̂ar(θ̂)− 2τ0ĉov(λ̂, θ̂). Testing H0 : φτ0 = 0 re-

quires comparing the t-value for φ̂τ0 with a critical threshold t∗α,df −1, and the null hypothesis is
not rejected if |tφ̂τ0 | ≤ t

∗
α,df −1. Squaring and rearranging terms we obtain the quadratic inequal-465
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ity,

(θ̂2 − v̂ar(θ̂)t∗2α,df −1)︸ ︷︷ ︸
a

τ20 + 2(ĉov(λ̂, θ̂)t∗2α,df −1 − λ̂θ̂)︸ ︷︷ ︸
b

τ0 + (λ̂2 − v̂ar(λ̂)t∗2α,df −1)︸ ︷︷ ︸
c

≤ 0. (20)

When considering the null hypothesis H0 : τ0 = 0, only the term c remains, and c is less or
equal to zero if and only if one cannot reject the null hypothesis H0 : λ = 0 in the reduced-form
regression. Also note that arbitrarily large values for τ0 will satisfy the inequality in Equation (20) 470

if, and only if, a < 0, meaning that we cannot reject the null hypothesis H0 : θ = 0 in the first-
stage regression. Within the Anderson-Rubin framework, we thus reach analogous conclusions
regarding hypothesis testing as those regarding the point estimate: (i) when interest lies in the
zero null hypothesis, the sensitivity of the reduced form is exactly the sensitivity of the IV—no
other analyses are needed; and, (ii) if one is interested in biases of a certain amount, or larger, 475

then the sensitivity of the first stage to the zero null hypothesis needs also to be assessed.

4.3. Sensitivity analysis for a specific null hypothesis
Within the Anderson-Rubin approach, a sensitivity analysis for the null hypothesis

H0 : τ = τ0, for any arbitrary value τ0 can be performed as follows.

Algorithm 1. Sensitivity analysis for a specific null hypothesis. 480

(1) Set H0 : τ = τ0, α, and R2 = {R2
Z∼W |X , R

2
Yτ0∼W |Z,X

};
(2) Construct Yτ0 = Y − τ0D;
(3) Fit the Anderson-Rubin regression Yτ0 = φ̂res,τ0Z +Xβ̂res,τ0 + ε̂τ0,res;
(4) Compare the t-value for testing H0 : φres,τ0 = 0 against the critical value t†max

α,df −1,R2 ;
(5) Compute XRVq∗=1,α(φτ0) and RVq∗=1,α(φτ0);
(6) Report the results of (4) and (5).

The procedure above tells us how omitted variables no worse than R2 =
{R2

Z∼W |X , R
2
Yτ0∼W |Z,X

} would alter inferences regarding the null H0 : τ = τ0, as well

as the minimal strength of R2 required to not reject the null H0 : τ = τ0, as given by the
RV or XRV. Note the bounds on R2 can be chosen to reflect the assumption that the omitted
variables are no stronger than certain observed covariates, as per Section 3.6. 485

4.4. Compatible inferences for IV given bounds on partial R2

More broadly, analysts can recover the set of inferences compatible with plausibility judg-
ments on the maximum strength of W . For a critical threshold t∗α,df −1, the confidence interval
for τ in the Anderson-Rubin framework is given by CI1−α(τ) = {τ0; t2φτ0 ≤ t

∗2
α,df −1}. Thus,

consider bounds on sensitivity parameters R2
Yτ0∼W |Z,X

≤ R2max
Y0∼W |Z,X (which should be judged 490

to hold regardless of the value of τ0) and R2
Z∼W |X ≤ R

2max
Z∼W |X . Let t†max

α,df −1,R2 denote the max-
imum bias-adjusted critical value under the posited bounds on the strength of W . The set of
compatible inferences for the IV estimate CImax

1−α,R2(τ) is then defined as

CImax
1−α,R2(τ) :=

{
τ0; t

2
φ̂res,τ0

≤
(
t†max
α,df −1,R2

)2}
. (21)

This interval can be found analytically using the same inequality as in Equation (20), but now 495

with the parameters of the restricted regression actually run, and t∗α,df −1 replaced by t†max
α,df −1,R2 .

Note that users can easily obtain CImax
1−α,R2(τ) with any software that computes Anderson-Rubin
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or Fieller’s confidence intervals by simply providing the modified critical threshold t†max
α,df −1,R2 .

Armed with the notion of a set of compatible inferences for IV, CImax
1−α,R2(τ), we are now able to

formally define and derive (extreme) robustness values for instrumental variable estimates.500

4.5. Extreme robustness values for IV
The extreme robustness value XRVq∗,α(τ) for the instrumental variable estimate is defined as

the minimum strength of association of omitted variables with the instrument so that we cannot
reject a reduction of (100× q∗)% of the original estimate; that is,

XRVq∗,α(τ) := inf
{
XRV; (1− q∗)τ̂res ∈ CImax

1−α,1,XRV(τ)
}
. (22)505

The XRVq∗,α(τ) computes the minimal strength of W required to not reject a particular null
hypothesis of interest. However, we might be interested, instead, in asking about the minimal
strength of omitted variables to not reject a specific value or worse. When confidence intervals
are connected, such as the case of standard OLS, the two notions coincide. But in the Anderson-
Rubin case, confidence intervals can sometimes consist of disjoint intervals. Therefore, let the510

upper and lower limits of CImax
1−α,R2(τ) be LLmax

1−α,R2(τ) and ULmax
1−α,R2(τ) respectively. The

extreme robustness value XRV≥q∗,α(τ) for the IV estimate is defined as the minimum strength
of association that confounders or side-effects need to have with the instrument so that we cannot
reject a change of (100× q∗)% or worse of the original estimate,

XRV≥q∗,α(τ) := inf
{
XRV; (1− q∗)τ̂res ∈

[
LLmax

1−α,1,XRV(τ), ULmax
1−α,1,XRV(τ)

]}
. (23)515

Both quantities can be obtained via the Anderson-Rubin and first-stage regressions as follows.

THEOREM 7 (EXTREME ROBUSTNESS VALUE—IV). Under Assumption 1, for given q∗

and α, the extreme robustness values for IV are given by

XRVq∗,α(τ) = XRV1,α(φτ∗), and, (24)
XRV≥q∗,α(τ) = min{XRV1,α(φτ∗), XRV1,α(θ)}, (25)520

where τ∗ = (1− q∗)τ̂res.

Remark 3. Theorem 7 corroborates the discussion of Section 4.2. The robustness of IV esti-
mates against biases as large or larger than a certain amount is bounded by the robustness of the
first stage assessed at the zero null. Moreover, for the special case of the null hypothesis of zero
effect, H0 : τ = 0, we obtain XRV≥1,α(τ) = min{XRV1,α(λ), XRV1,α(θ)}, that is, the XRV525

of the IV estimate, against biases that bring it to zero or worse, is equal to the minimum of the
XRV of the first stage and the reduced form, both evaluated at the zero null (q∗ = 1).

Remark 4. Note that the XRV of the first stage XRV1,α(θ) can be arbitrarily different from tra-
ditional metrics of instrument strength. For a simple numerical example, consider df = 100, 000
and suppose the first stage F statistic is F = t2 ≈ 100, which could be considered a strong in-530

strument for statistical inference purposes. In this case, we still have XRV1,α(θ) ≈ 0.001.

4.6. Robustness values for IV
The definitions of the robustness value for instrumental variables follow the same logic dis-

cussed above, but now considering both bounds on CImax
1−α,R2(τ) varying simultaneously. That

is, the RV for not rejecting a bias of exactly q∗ is defined as535

RVq∗,α(τ) := inf
{
RV; (1− q∗)τ̂res ∈ CImax

1−α,RV,RV(τ)
}
, (26)
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and the RV for not rejecting the null of a reduction of (100× q∗)% or worse is defined as,

RV≥q∗,α(τ) := inf
{
RV; (1− q∗)τ̂res ∈

[
LLmax

1−α,RV,RV(τ), ULmax
1−α,RV,RV(τ)

]}
. (27)

We then have analogous results for robustness values, and similar discussion applies.

THEOREM 8 (ROBUSTNESS VALUE—IV). Under Assumption 1, for given q∗ and α, the ro- 540

bustness values for IV are given by

RVq∗,α(τ) = RV1,α(φτ∗), and, (28)
RV≥q∗,α(τ) = min{RV1,α(φτ∗), RV1,α(θ)}, (29)

where τ∗ = (1− q∗)τ̂res.

4.7. Conservative bounds on the strength of omitted variables 545

When testing a specific null hypothesis H0 : τ = τ0 in the Anderson-Rubin regres-
sion, we have kZ as in Section 3.6, and instead of kY we now have kYτ0 :=

R2
Yτ0∼W |Z,X−j

/R2
Yτ0∼Xj |ZX−j

. The plausibility judgment one is making here is thus under the
null H0 : τ = τ0. Since the judgment is made under a specific null, the bounds will be differ-
ent when testing different hypotheses. Therefore, it is useful to compute bounds under a slightly 550

more conservative assumption. We can posit that the omitted variables are no stronger than (a
multiple of) the maximum explanatory power of an observed covariate, regardless of the value of

τ0, i.e, kmax
Yτ0

:=
maxτ0 R

2
Yτ0∼W |Z,X−j

maxτ0 R
2
Yτ0∼Xj |ZX−j

. This has the useful property of providing a unique bound

for any null hypothesis, and can be used to place bounds on the sensitivity contours of the lower
and upper limit of the Anderson-Rubin confidence intervals, as we show next. 555

5. USING THE OMITTED VARIABLE BIAS FRAMEWORK FOR THE SENSITIVITY OF IV
We return to our running example of Section 2 and show how the tools developed here can

be deployed to assess the robustness of the original findings to violations of the IV assumptions.
Throughout, we focus the discussion on violations of the ignorability of the instrument due to
confounders, as this is the main threat of the study under investigation. Readers should keep in 560

mind, however, that mathematically all analyses performed here can be equally interpreted as
assessing violations of the exclusion restriction (or both).

Table 2 shows our proposed minimal sensitivity reporting for IV estimates. It starts by replicat-
ing the usual statistics, such as the point estimate (0.132), as well as the lower and upper limits
of the Anderson-Rubin confidence interval [0.025, 0.285], and the t-value against the null hy- 565

pothesis of zero effect (2.33). Next, we propose researchers report the extreme robustness value
(XRV≥q∗,α = 0.05%) and the robustness value (RV≥q∗,α = 0.67%) required to bring the lower
limit of the confidence interval to or beyond zero (or another meaningful threshold), at the 5%
significance level. We also show these same statistics for the first stage and reduced form. As
derived in Theorems 7 and 8, the (extreme) robustness value of the IV estimate required to bring 570

the lower limit of the confidence interval to zero or below is the minimum of the (extreme) ro-
bustness value of the reduced form and the (extreme) robustness value of the first stage evaluated
at the zero null. In our running example, the reduced form is more fragile, thus the sensitivity of
the IV hinges critically on the sensitivity of the reduced form (see Supplementary Material for
separate detailed analyses of the robustness of the reduced form and first stage). 575

The RV reveals that confounders explaining 0.67% of the residual variation both of prox-
imity and of (log) Earnings are already sufficient to make the instrumental variable estimate
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Model Param. Estimate LL1−α UL1−α t-value XRV≥q∗,α RV≥q∗,α
Inst. Variable τ 0.132 0.025 0.285 2.33 0.05% 0.67%
First Stage θ 0.320 0.148 0.492 3.64 0.31% 3.02%
Reduced Form λ 0.042 0.007 0.078 2.33 0.05% 0.67%
Bound (1x SMSA): R2

Y∼W |Z,X = 2%, R2
W∼Z|X = 0.6%, t†max

α,df −1,R2 = 2.55.

Note: df = 2994, q∗ = 1, α = 0.05.

Table 2: Minimal sensitivity reporting.

statistically insignificant. Further, the XRV shows that, if we are not willing to impose con-
straints on the partial R2 of confounders with the outcome, they need only explain 0.05% of
the residual variation of the instrument to be problematic. To aid users in making plausibility580

judgments, the note of the table provides bounds on the maximum strength of unobserved con-
founding if it were as strong as SMSA (an indicator variable for whether the individual lived
in a metropolitan region) along with the bias-adjusted critical value for a confounder with such
strength, t†max

α,df −1,R2 = 2.55. Since the observed t-value (2.33) is less than the adjusted critical
threshold of 2.55, this immediately reveals that confounding as strong as SMSA (e.g. residual585

geographic confounding) is already sufficiently strong to be problematic.
It will often be valuable to assess the sensitivity of the instrumental variable estimate against

hypothesis other than zero. To that end, investigators may wish to examine sensitivity contour
plots showing the whole range of adjusted lower and upper limits of the Anderson-Rubin confi-
dence interval against various strengths of the omitted variables W . These contours are shown in590

Figure 1. Here the horizontal axis indicates the bounds onR2
Z∼W |X and the vertical axis indicates

the bounds onR2
Yτ0∼W |Z,X

. Under a constant treatment effects model,R2
Yτ0∼W |Z,X

has a simple
interpretation—it stands for how much residual variation confounders explain of the untreated
potential outcome. For simplicity, of exposition, we adopt this interpretation here. The contour
lines show the worst lower (or upper) limit of the CImax

1−α,R2(τ), with omitted variables bounded595

by such strength. Red dashed lines shows a critical contour line of interest (such as zero) as
well as the boundary beyond confidence intervals become unbounded. The red diamonds places
bounds on strength of W as strong as Black (an indicator for race) and, again, SMSA, as per Sec-
tion 4.7. As the plot reveals, both confounding as strong as SMSA, or as strong as black, could
lead to an interval for the target parameter of CImax

1−α,R2(τ) = [−0.02, 0.40], which includes not600

only implausibly high values (40%), but also negative values (-2%), and is thus too wide for any
meaningful conclusions. Since it is not very difficult to imagine residual confounders as strong
or stronger than those (e.g., parental income, finer grained geographic location, etc), these results
call into question the strength of evidence provided by this study.

6. DISCUSSION605

Sensitivity analysis tools, such as those introduced in this paper, provide logical deductions
aimed at: (i) revealing the consequences of varying degrees of violation of identifying assump-
tions (e.g., via bias-adjusted critical values), and (ii) determining the minimal degree of viola-
tion of those assumptions necessary to overturn certain conclusions (e.g., via robustness values).
This shifts the scientific debate from arguing whether, say, latent confounders of an instrumental610

variable have exactly zero strength—an indefensible claim in most settings—to a more realistic
discussion about whether we can confidently rule out strengths that are shown to be problematic.
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Partial R2 of confounder(s) with the instrument

P
ar

tia
l R

2  o
f c

on
fo

un
de

r(
s)

 w
ith

 th
e 

po
t. 

ou
tc

om
e

 −0.093 
 −0.035 

 0  0.022 

0.00 0.02 0.04 0.06 0.08

0.
00

0.
02

0.
04

0.
06

0.
08

 −Inf 
Unadjusted

(0.025)

1x black
(−0.0212)

1x smsa
(−0.0192)

(a) Sensitivity contours for the lower limit.
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Figure 1: Sensitivity contours of the Anderson-Rubin confidence interval.

The results of sensitivity analyses are not always self-evident and can often be surprising.
They may reveal that certain studies are highly sensitive to plausible perturbations of identifying
assumptions, while others remain robust despite such perturbations. Even when results fall in 615

between these two extremes, sensitivity analyses still represent an improvement over simply as-
suming away the problem. They clarify what one needs to know, by transparently revealing how
vulnerable the results are to violations of the exclusion and independence restrictions. This pro-
vides policymakers a better understanding of what remains unknown about an estimated effect,
and offers researchers a roadmap for improving their analyses in future inquiries. 620

It is important to emphasize that plausibility judgments on the maximum strength of latent
variables inevitably depend on expert knowledge and can thus vary substantially across scientific
disciplines, fields of study, and the quality of the research design. For that reason, we do not
propose any universal thresholds for the sensitivity statistics we propose here. For instance, in
an observational study without randomization nor a rich set of measured confounders, it would 625

be hard to rule out latent confounders that explain, say, 1% of the residual variation of the in-
strument. This indeed seems to be the case in our running example (Card, 1993), where residual
geographic confounders could plausibly attain such strength. In other scientific contexts, how-
ever, a value of 1% may in fact be large. For example, in a Mendelian randomization study where
the main concern is pleiotropy, it may be defensible to argue against genetic variants explaining 630

1% of the variation of a latent complex pleiotropic trait (Cinelli et al., 2022).
Finally, in this paper we focused on the traditional instrumental variable estimand, consist-

ing of the ratio of two regression coefficients. We chose to do so because this reflects current
practices for IV analysis and encompasses the vast majority of applied work. These tools can
thus be immediately put to use to improve the robustness of current research, without requiring 635

any additional assumptions, beyond those that already justified the traditional IV analysis in the
first place. Recent papers, however, have usefully questioned the causal interpretation of this es-
timand, as it relies on strong parametric assumptions (Słoczyński, 2020; Blandhol et al., 2022).
Extending the sensitivity tools we present here to the nonparametric case is possible by lever-
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aging recent results in Chernozhukov et al. (2022), and offers an interesting direction for future640

work.
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A The mechanics of IV estimation

For ease of reference, in this section we show in detail some of the algebraic identities (and differences) of
the main approaches to IV estimation.

Notation. We denote by Y the (n × 1) vector of the outcome of interest with n observations; by D the
(n × 1) treatment vector; by Z the (n × 1) vector of the instrument; by X an (n × p) matrix of observed
covariates (including a constant), and by W an (n × l) matrix of unobserved covariates. We use Y ⊥X to
denote the part of Y not linearly explained by X, that is, Y ⊥X := Y −X(X ′X)−1X ′Y . Throughout, we
assume that the relevant matrices have full rank. In this section df := n− p− l − 1.

A.1 Indirect Least Squares (ILS)

ILS is perhaps the most straightforward approach to instrumental variable estimation. We start with two
OLS models, one capturing the effect of the instrument on the treatment (first stage) and another the effect
of the instrument on the outcome (reduced form),

First stage: D = θ̂Z + Xψ̂ + W δ̂ + ε̂d, (1)

Reduced form: Y = λ̂Z + Xβ̂ + W γ̂ + ε̂y, (2)

where θ̂, ψ̂ and δ̂ are the OLS estimates of the regression of D on Z, X and W , and ε̂d its corresponding
residuals; analogously, λ̂, β̂ and γ̂ are the OLS estimates of the regression of Y on Z, X and W , and ε̂y its
corresponding residuals.

Point Estimate. The estimator for τ is constructed by simply using the plug-in principle and taking the
ratio of λ̂ and θ̂,

τ̂ILS :=
λ̂

θ̂
. (3)

Inference. Inference in the ILS framework is usually performed using the delta-method, with estimated
variance

v̂ar(τ̂ILS) :=
1

θ̂2

(
v̂ar(λ̂) + τ̂2ILSv̂ar(θ̂)− 2τ̂ILSĉov(λ̂, θ̂)

)
(4)

where, using the FWL formulation,

v̂ar(λ̂) =
var(Y ⊥Z,X,W )

var(Z⊥X,W )
× df−1, v̂ar(θ̂) =

var(D⊥Z,X,W )

var(Z⊥X,W )
× df−1 (5)

are the estimated variances of the reduced form and first stage, and
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ĉov(λ̂, θ̂) =
cov(Y ⊥Z,X,W , D⊥Z,X,W )

var(Z⊥X,W )
× df−1 (6)

is the estimated covariance of λ̂ and θ̂. Here var(·) and cov(·) denote sample variances of covariances.

A.2 Two-Stage Least Squares (2SLS)

A closely related approach for instrumental variable estimation is denoted by “two-stage least squares”
(2SLS). As its name suggests, this involves two nested steps of OLS estimation: a first-stage regression given
by Equation (1) to produce fitted values for the treatment (D̂), then regressing the outcome on these fitted
values,

Second stage: Y = τ̂2SLSD̂ + Xβ̂2SLS + W γ̂2SLS + ε̂2SLS. (7)

The 2SLS estimate corresponds to the coefficient τ̂2SLS in Equation (7), called the “second-stage” regression.

Point Estimate. By the FWL theorem, the 2SLS point estimate can be written as

τ̂2SLS =
cov(Y ⊥X,W , D̂⊥X,W )

var(D̂⊥X,W )
. (8)

In the just-identified case, the ILS and 2SLS point estimates are numerically identical. Expanding D̂ and
partialling out {X,W } we have that

τ̂2SLS =
cov(Y ⊥X,W , D̂⊥X,W )

var(D̂⊥X,W )
=

cov(Y ⊥X,W , θ̂Z⊥X,W )

var(θ̂Z⊥X,W )
=
θ̂ × cov(Y ⊥X,W , Z⊥X,W )

θ̂2 × var(Z⊥X,W )
=
λ̂

θ̂
, (9)

which establishes the equality τ̂2SLS = τ̂ILS =: τ̂ .

Inference. By the FWL theorem, the standard two-stage least squares estimate of the variance of τ̂2SLS
can be written as

v̂ar(τ̂2SLS) :=
var(Y ⊥X,W − τ̂D⊥X,W )

var(D̂⊥X,W )
× df−1 . (10)

As with the point estimate, for the just-identified case, the estimated variance of ILS and 2SLS are numeri-
cally identical. To see why, note the denominator of Equation (10) can be expanded to

var(D̂⊥X,W ) = var(θ̂Z⊥X,W ) = θ̂2 var(Z⊥X,W ). (11)

Finally, the numerator can be written as,

var(Y ⊥X,W − τ̂D⊥X,W ) = var(Y ⊥X,W − τ̂(θ̂ZX,W +D⊥Z,X,W )) (12)

= var((Y ⊥X,W − λ̂ZX,W )− τ̂D⊥Z,X,W ) (13)

= var(Y ⊥Z,X,W − τ̂D⊥Z,X,W ) (14)

= var(Y ⊥Z,X,W ) + τ̂2 var(D⊥Z,X,W )− 2τ̂ cov(Y ⊥Z,X,W , D⊥Z,X,W ). (15)
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Plugging in Equations (15) and (11) back in Equation (10), then using Equations (5) and (6) establishes the
desired equality.

A.3 Anderson-Rubin (AR)

The Anderson-Rubin approach (Anderson and Rubin, 1949) starts by creating the random variable Yτ0 :=
Y − τ0D in which we subtract from Y a “putative” causal effect of D, namely, τ0. If Z is a valid instrument,
under the null hypothesis H0 : τ = τ0, we should not see an association between Yτ0 and Z, conditional on
X and W . In other words, if we run the OLS model

Anderson-Rubin: Yτ0 = φ̂τ0Z + Xβ̂τ0 + W γ̂τ0 + ε̂τ0 , (16)

we should find that φ̂τ0 is equal to zero, but for sampling variation. This forms the basis for the point
estimate and confidence interval in the AR approach.

Point Estimate. We define the Anderson-Rubin point estimate to be the value of τ0 that makes φ̂ = 0,
ie,

τ̂AR = {τ0; φ̂τ0 = 0}. (17)

Resorting again to the FWL theorem, we can write the regression coefficient of the AR regression, φ̂τ0 , as a
function of the regression coefficients of the first stage and reduced form,

φ̂τ0 =
cov(Y ⊥X,W − τ0D⊥X,W , Z⊥X,W )

var(Z⊥X,W )
(18)

=
cov(Y ⊥X,W , Z⊥X,W )

var(Z⊥X,W )
− τ0

cov(D⊥X,W , Z⊥X,W )

var(Z⊥X,W )
(19)

= λ̂− τ0θ̂. (20)

Thus solving for the condition φ̂τ0 = 0 gives us

τ̂AR =
λ̂

θ̂
, (21)

which establishes the equality τ̂AR = τ̂ILS . Therefore, all the point estimates of ILS, 2SLS and AR are
numerically identical.

Inference. The AR confidence interval with significance level α is defined as all values of τ0 such that we
cannot reject the null hypothesis H0 : φτ0 = 0 at the chosen significance level

CI1−α(τ) = {τ0; t2φ̂τ0
≤ t∗2α,df}. (22)

This confidence interval can be obtained analytically as functions of the estimates of the first-stage and
reduced form regressions. As shown in Equation (20), φ̂τ0 can be written as the linear combination

φ̂τ0 = λ̂− τ0θ̂. (23)
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Likewise, by the FWL theorem, the estimated variance of φ̂τ0 is given by

v̂ar(φ̂τ0) =
var(Y ⊥Z,X,W − τ0D⊥Z,X,W )

var(Z⊥X,W )
× df−1 (24)

=

(
var(Y ⊥Z,X,W )

var(Z⊥X,W )
+ τ20

var(D⊥Z,X,W )

var(Z⊥X,W )
− 2τ0

cov(Y ⊥Z,X,W , D⊥Z,X,W )

var(Z⊥X,W )

)
× df−1 (25)

= v̂ar(λ̂) + τ20 v̂ar(θ̂)− 2τ0ĉov(λ̂, θ̂). (26)

Thus, we obtain that the t-value tφ̂τ0
for testing the null hypothesis H0 : φτ0 = 0 equals to

tφ̂τ0
=

λ̂− τ0θ̂√
v̂ar(λ̂) + τ20 v̂ar(θ̂)− 2τ0ĉov(λ̂, θ̂)

. (27)

And our task is to find all values of τ0 such that the following inequality holds

(λ̂− τ0θ̂)2

v̂ar(λ̂) + τ20 v̂ar(θ̂)− 2τ0ĉov(λ̂, θ̂)
≤ t∗2α,df . (28)

First, note that the empty set is not possible here. If we pick τ0 = τ̂AR, then the numerator in Equation (28)
is zero, and the inequality trivially holds—therefore, the point-estimate is always included in the confidence
interval. Now squaring and rearranging terms we obtain(

θ̂2 − v̂ar(θ̂)× t∗2α,df
)

︸ ︷︷ ︸
a

τ20 + 2
(

ĉov(λ̂, θ̂)× t∗2α,df − λ̂θ̂
)

︸ ︷︷ ︸
b

τ0 +
(
λ̂2 − v̂ar(λ̂)× t∗2α,df

)
︸ ︷︷ ︸

c

≤ 0. (29)

Our task has simplified to find all values of τ0 that makes the above quadratic equation, with coefficients a,
b and c, non-positive. As discussed in Section F.1, this confidence intervals can take three different forms,
depending on the instrument strength: (i) finite and connected, (ii) the union two disjoint half lines; or, (iii)
the whole real line.

A.4 Fieller’s theorem

Fieller’s proposal to test the null hypothesis H0 : τ = τ0 is to construct the linear combination φ̂τ0 = λ̂−τ0θ̂,
and to test the null hypothesis H0 : φτ0 = 0. The standard estimated variance for φ̂τ0 equals Equation (26),
resulting in a test statistic equal to Equation (27), and thus numerically identical to the AR approach.

B OVB with the partial R2 parameterization

As in the main text, we use the reduced form as an example, with the understanding that all results here
hold for arbitrary OLS estimates.

B.1 Proof of Theorem 1

Theorem 1 was derived in Cinelli and Hazlett (2020). For completeness, we reproduce the proof here. As
before var(·), sd(·), cov(·), cor(·) denote sample variances, standard deviations, covariances and correlations
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respectively. By the FWL theorem,

|λ̂res − λ̂| =
(

cov(Z⊥X , W⊥X)

var(Z⊥X)

)(
cov(Y ⊥X,Z , W⊥X,Z)

var(W⊥X,Z)

)
=

(
cor(Z⊥X , W⊥X)sd(W⊥X)

sd(Z⊥X)

)(
cor(Y ⊥X,Z , W⊥X,D)sd(Y ⊥X,Z)

sd(W⊥X,D)

)

=

cor(Y ⊥X,Z , W⊥X,Z)cor(Z⊥X , W⊥X)
sd(W⊥X,Z)
sd(W⊥X)

(sd(Y ⊥X,Z)

sd(Z⊥X)

)
. (30)

Noting that cor(Y ⊥X,Z , W⊥X,Z)2 = R2
Y∼W |Z,X , that cor(W⊥X , Z⊥X)2 = R2

D∼W |X , and that var(W⊥X,Z)
var(W⊥X)

=

1−R2
W∼D|X = 1−R2

D∼W |X , we can write (30) as

|λ̂res − λ̂| =

√√√√R2
Y∼W |Z,X R2

D∼W |X

1−R2
D∼W |X

× sd(Y ⊥X,Z)

sd(Z⊥X)
=
√
R2
Y∼W |Z,X f2D∼W |X ×

sd(Y ⊥X,Z)

sd(Z⊥X)
. (31)

Note this is a general bias result for linear projections, and it holds both in the sample as well as in the
population, by simply replacing sample quantities with the analogous population quantities.

As for the classical standard errors, recall that, again by the FWL theorem, they can be written as:

ŝe(λ̂res) =
sd(Y ⊥X,Z)

sd(Z⊥X)

√
1

df
, ŝe(λ̂) =

sd(Y ⊥X,Z,W )

sd(Z⊥X,W )

√
1

df− 1
. (32)

Where here df = n− p− 1. Taking the ratio we obtain

ŝe(λ̂)

ŝe(λ̂res)
=

(
sd(Y ⊥X,Z,W )

sd(Y ⊥X,Z)

)(
sd(Z⊥X)

sd(Z⊥X,W )

)√
df

df− 1
. (33)

Using the same partial R2 identities as before, we have

ŝe(λ̂) =

√√√√1−R2
Y∼W |Z,X

1−R2
Z∼W |X

× ŝe(λ̂res)×
√

df

df− 1
=

√√√√1−R2
Y∼W |Z,X

1−R2
Z∼W |X

× sd(Y ⊥X,Z)

sd(Z⊥X)
×
√

1

df− 1
. (34)

To aid interpretation, we define BF :=

√
R2
Y∼W |Z,XR2

Z∼W |X
1−R2

Z∼W |X
as the “bias factor” of W , which is the part of

the bias solely determined by R2
Y∼W |Z,X and R2

Z∼W |X , and SEF :=

√
1−R2

Y∼W |Z,X
1−R2

Z∼W |X
as the “standard error

factor” of W , summarizing the factor of the standard error which is solely determined by the sensitivity
parameters R2

Y∼W |Z,X and R2
Z∼W |X .

C Bias-adjusted critical values

As in the main text, we use the reduced form as an example, with the understanding that all results here
hold for arbitrary OLS estimates. Here df = n− p− 1.
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C.1 Proof of Theorem 2

Let LL1−α(λ) := λ̂− t∗α,df −1× ŝe(λ̂) be the lower limit of a 1−α level confidence interval of the full reduced
form regression, where t∗α,df −1 denotes the critical α-level threshold of the t-distribution with df −1 degrees
of freedom. Considering the direction of the bias that reduces the lower limit we obtain,

LL1−α(λ) := λ̂− t∗α,df −1 × ŝe(λ̂) (35)

= λ̂res − BF
√

df × ŝe(λ̂res)− t∗α,df −1 × SEF
√

df /(df −1)× ŝe(λ̂res) (36)

= λ̂res −
(

SEF
√

df /(df −1)× t∗α,df −1 + BF
√

df
)
× ŝe(λ̂res). (37)

Similarly, now let UL1−α(λ) the upper limit of the confidence interval and consider the direction of the bias
that increases the upper limit. By the same algebraic manipulations, we obtain

UL1−α(λ) = λ̂res +
(

SEF
√

df /(df −1)× t∗α,df −1 + BF
√

df
)
× ŝe(λ̂res). (38)

Note that, in both Equations (37) and (38), the only part that depends on the omitted variable W is the
common multiple of the observed standard error, which defines the new bias-adjusted critical value,

t†
α,df −1,R2 := SEF

√
df /(df −1)× t∗α,df −1 + BF

√
df. (39)

C.2 Proof of Theorem 3

Now suppose the analyst wishes to investigate the worst possible lower (or upper) limits of the confidence
intervals induced by a confounder with strength no stronger than certain bounds, for instance, R2

Y∼W |Z,X ≤
R2max
Y∼W |Z,X and R2

Z∼W |X ≤ R2max
Z∼W |X . As per the last section, this amounts to finding the largest bias-

adjusted critical value induced by an omitted variable W with at most such strength. That is, we need to
solve the following maximization problem

max
R2
Y∼W |Z,X ,R2

Z∼W |X

t†
α,df −1,R2 s.t. R2

Y∼W |Z,X ≤ R
2max
Y∼W |Z,X , R2

Z∼W |X ≤ R
2max
Z∼W |X . (40)

Dividing t†
α,df −1,R2 by

√
df and letting f∗α,df −1 := t∗α,df −1/

√
df −1, we see that the derivative of t†

α,df −1,R2

with respect to R2
Z∼W |X is always increasing, since

∂(t†
α,df −1,R2/

√
df)

∂R2
Z∼W |X

=
∂ BF

∂R2
Z∼W |X

+ f∗α,df −1 ×
∂ SEF

∂R2
Z∼W |X

(41)

=
(R2

Y∼W |Z,X)1/2

2(1−R2
Z∼W |X)3/2(R2

Z∼W |X)1/2
+ f∗α,df −1

(1−R2
Y∼W |Z,X)1/2

2(1−R2
Z∼W |X)3/2

(42)

=
(R2

Y∼W |Z,X)1/2 + f∗α,df −1(1−R2
Y∼W |Z,X)1/2(R2

Z∼W |X)1/2

2(1−R2
Z∼W |X)3/2(R2

Z∼W |X)1/2
≥ 0. (43)

Therefore, the optimal R2∗
Z∼W |X (the one the minimizes (maximizes) the lower (upper) limit of the confi-

dence interval) always reaches the bound. However, the same is not true for the derivative with respect to
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R2
Y∼W |Z,X . To see that, write,

∂(t†
α,df −1,R2/

√
df)

∂R2
Y∼W |Z,X

=
∂ BF

∂R2
Y∼W |Z,X

+ f∗α,df −1 ×
∂ SEF

∂R2
Y∼W |Z,X

(44)

=
(R2

Z∼W |X)1/2

2(1−R2
Z∼W |X)1/2(R2

Y∼W |Z,X)1/2
+

−f∗α,df −1
2(1−R2

Y∼W |Z,X)1/2(1−R2
Z∼W |X)1/2

(45)

=
(R2

Z∼W |X)1/2(1−R2
Y∼W |Z,X)1/2 − f∗α,df −1(R2

Y∼W |Z,X)1/2

2(R2
Y∼W |Z,X)1/2(1−R2

Y∼W |Z,X)1/2(1−R2
Z∼W |X)1/2

. (46)

That is, due to the variance reduction factor of the omitted variable, it could be the case that increasing
R2
Y∼W |Z,X reduces the standard error more than enough to compensate for the increase in bias, resulting in

tighter confidence intervals.
We have, thus, two cases. First, consider the case in which the optimal point reaches both bounds. In

that case, the numerator of Equation (46) must be positive when evaluated at the solution. Rearranging
and squaring, we see that this happens when

R2max
Z∼W |X ≥ f

∗2
α,df −1 × f2max

Y∼W |Z,X . (47)

Clearly, when considering the sensitivity of the point estimate, we have f∗α,df −1 = 0, and the condition always

holds. If condition of Equation (47) fails, then the optimal R2∗
Y∼W |Z,X will be an interior point. This will

happen when the numerator of Equation (46) equals zero. Since we know R2
Z∼W |X reaches its maximum,

the optimal R2∗
Y∼W |Z,X will be,

R2∗
Y∼W |Z,X =

R2max
Z∼W |X

f∗2α,df −1 +R2max
Z∼W |X

. (48)

D (Extreme) Robustness Values for OLS

As in the main text, we use the reduced form as an example, with the understanding that all results here
hold for arbitrary OLS estimates.

D.1 Proof of Theorem 4

The Extreme Robustness Value XRVq∗,α(λ) is defined as the greatest lower bound XRV on the sensitivity
parameter R2

Z∼W |X , while keeping the parameter R2
Y∼W |Z,X unconstrained, such that the null hypothesis

that a change of (100× q)% of the original estimate, H0 : λ = (1− q∗)λ̂res, is not rejected at the α level:

XRVq∗,α(λ) := inf
{

XRV; (1− q∗)λ̂res ∈ CImax
1−α,1,XRV(λ)

}
. (49)

First, consider the case where fq∗(λ) < f∗α,df −1. Note the XRV will be zero, since we already cannot reject

the null hypothesis H0 : λ = (1 − q∗)λ̂res even assuming zero omitted variable bias. Next, note that, when
f∗α,df −1 > 0, we can always pick a large enough value for R2

Y∼W |Z,X until condition (47) fails (since f2Y∼W |Z,X
is unbounded). Therefore, XRV will be given by an interior point solution. Using Equation (48) to express

t†max
α,df −1,R2 solely in terms of the optimal R2

Z∼W |X , and solving for the value that gives us (1 − q∗)λ̂res, we

7



obtain

XRVq∗,α(λ) =


0, if fq∗(λ) ≤ f∗α,df−1,
f2q∗(λ)− f∗2α,df−1

1 + f2q∗(λ)
, otherwise.

(50)

D.2 Proof of Theorem 5

The Robustness Value RVq∗,α(λ) for not rejecting the null hypothesis that H0 : λ = (1 − q∗)λ̂res, at the
significance level α, is defined as

RVq∗,α(λ) := inf
{

RV; (1− q∗)λ̂res ∈ CImax
1−α,RV,RV(λ)

}
, (51)

where now we consider both sensitivity parameters bounded by RV. Again, consider the case where fq∗(λ) <

f∗α,df −1. The RV then must be zero, since we already cannot reject the null hypothesis H0 : λ = (1− q∗)λ̂res
given the current data. Next, let’s consider the case when the bound on R2

Y∼W |Z,X is not biding—here our
optimization problem reduces to the XRV case. Finally, we have the solution in which both coordinates
achieve the bound, resulting in a quadratic equation as solved in Cinelli and Hazlett (2020). We thus have,

RVq∗,α(λ) =


0, if fq∗(λ) ≤ f∗α,df−1,
1

2

(√
f4q∗,α(λ) + 4f2q∗,α(λ)− f2q∗,α(λ)

)
, if f∗α,df−1 < fq∗(λ) < f∗−1α,df−1,

XRVq∗,α(λ), otherwise.

(52)

The condition fq∗(λ) < f∗−1α,df−1, stems from the fact that the XRV solution cannot satisfy Equation (47).

We now show that this is equivalent to the condition RVq∗,α(λ) > 1 − 1/f2q∗(λ) that Cinelli and Hazlett
(2020) had previously established. If fq∗(λ) < 1/f∗α,df−1 then,

RVq∗,α(λ) =
1

2

(√
f4q∗,α(λ) + 4f2q∗,α(λ)− f2q∗,α(λ)

)
(53)

=
1

2

(√
(fq∗(λ)− f∗α,df−1)4 + 4(fq∗(λ)− f∗α,df−1)2 − (fq∗(λ)− f∗α,df−1)2

)
(54)

>
1

2

(√
(fq∗(λ)− 1/fq∗(λ))4 + 4(fq∗(λ)− 1/fq∗(λ))2 − (fq∗(λ)− 1/fq∗(λ))2

)
(55)

=
1

2


√√√√(f2q (λ)− 1

fq∗(λ)

)4

+ 4

(
f2q∗(λ)− 1

fq∗(λ)

)2

−

(
f2q∗(λ)− 1

fq∗(λ)

)2
 (56)

=

(
1

2

)(
f2q∗(λ)− 1

f2q∗(λ)

)(√
(f2q (λ)− 1)2 + 4f2q∗(λ)− f2q∗(λ) + 1

)
(57)

=

(
1

2

)(
1− 1/f2q∗(λ)

) (√
f4q (λ) + 1− 2f2q∗(λ) + 4f2q∗(λ)− f2q∗(λ) + 1

)
(58)

=

(
1

2

)(
1− 1/f2q∗(λ)

) (√
f4q (λ) + 1 + 2f2q∗(λ)− f2q∗(λ) + 1

)
(59)

=

(
1

2

)(
1− 1/f2q∗(λ)

) (
f2q∗(λ) + 1− f2q∗(λ) + 1

)
(60)

= 1− 1/f2q∗(λ) (61)
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Therefore, fq∗(λ) < 1/f∗α,df−1 =⇒ RVq∗,α(λ) > 1 − 1/f2q∗(λ). By the same argument one can derive

RVq∗,α(λ) > 1− 1/f2q∗(λ) =⇒ fq(λ) > 1/f∗α,df−1. Hence, both conditions are equivalent.

E Bounds on the strength of W

As in the main text, we use the reduced form as an example, with the understanding that all results here
hold for arbitrary OLS estimates.

E.1 Proof of Theorem 6

Let Xj be a specific covariate of the set X. Now define

kZ :=
R2
Z∼W |X−j

R2
Z∼Xj |X−j

, kY :=
R2
Y∼W |Z,X−j

R2
Y∼Xj |ZX−j

. (62)

Where X−j is the set X excluding covariate Xj . Our goal in this section is to re-express (or bound) both
sensitivity parameters as a function of the new parameters kZ and kY and the observed data.

We can thus start by re-expressing R2
Y∼W |Z,X in terms of kY , which in this case is straightforward.

Using the recursive definition of partial correlations, and considering our two conditions R2
W∼Xj |Z,X−j = 0

and R2
Y∼W |Z,X−j = kYR

2
Y∼Xj |ZX−j , we obtain

∣∣RY∼W |Z,X ∣∣ =

∣∣∣∣∣∣RY∼W |Z,X−j −RY∼Xj |Z,X−jRW∼Xj |Z,X−j√
1−R2

Y∼Xj |Z,X−j

√
1−R2

W∼Xj |Z,X−j

∣∣∣∣∣∣ (63)

=

∣∣∣∣∣∣ RY∼W |Z,X−j√
1−R2

Y∼Xj |Z,X−j

∣∣∣∣∣∣ (64)

=

∣∣∣∣∣∣
√
kYRY∼Xj |Z,X−j√
1−R2

Y∼Xj |Z,X−j

∣∣∣∣∣∣ (65)

=
√
kY

∣∣∣fY∼Xj |Z,X−j ∣∣∣ . (66)

Hence,

R2
Y∼W |Z,X = kY × f2Y∼Xj |Z,X−j . (67)

Moving to bound R2
Z∼W |X , it is useful to first note that the conditions R2

W∼Xj |Z,X−j = 0 and R2
Z∼W |X−j =

kZR
2
Z∼Xj |X−j allow us to re-express RW∼Xj |X−j as a function of kZ

RW∼Xj |Z,X−j = 0 =⇒
RW∼Xj |X−j −RW∼Z|X−jRXj∼Z|X−j√

1−R2
W∼Z|X−j

√
1−R2

Xj∼Z|X−j

= 0 (68)

=⇒ RW∼Xj |X−j −RW∼Z|X−jRXj∼Z|X−j = 0 (69)

=⇒ RW∼Xj |X−j = RW∼Z|X−jRXj∼Z|X−j (70)

=⇒ RW∼Xj |X−j = RZ∼W |X−jRZ∼Xj |X−j (71)

=⇒ |RW∼Xj |X−j | =
√
kZR

2
Z∼Xj |X−j . (72)
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Now we can re-write R2
Z∼W |X using the recursive definition of partial correlations

∣∣RZ∼W |X ∣∣ =

∣∣∣∣∣∣RZ∼W |X−j −RZ∼Xj |X−jRW∼Xj |X−j√
1−R2

Z∼Xj |X−j

√
1−R2

W∼Xj |X−j

∣∣∣∣∣∣ (73)

≤

∣∣∣RZ∼W |X−j ∣∣∣+
∣∣∣RZ∼Xj |X−jRW∼Xj |X−j ∣∣∣√

1−R2
Z∼Xj |X−j

√
1−R2

W∼Xj |X−j

(74)

=

∣∣∣√kZRZ∼Xj |X−j ∣∣∣+
∣∣∣√kZR3

Z∼Xj |X−j

∣∣∣√
1−R2

Z∼Xj |X−j

√
1− kZR4

Z∼Xj |X−j

(75)

=

√kZ +
∣∣∣R3

Z∼Xj |X−j

∣∣∣√
1− kZR4

Z∼Xj |X−j

×


∣∣∣RZ∼Xj |X−j ∣∣∣√
1−R2

Z∼Xj |X−j

 (76)

= η|fZ∼Xj |X−j |. (77)

Hence we have that

R2
Z∼W |X ≤ η

2f2Z∼Xj |X−j , (78)

where η =

√kZ+∣∣∣∣R3
Z∼Xj |X−j

∣∣∣∣√
1−kZR4

Z∼Xj |X−j

.

F (Extreme) Robustness Values for IV

F.1 Proof of Theorems 7 and 8

Recall that in the AR framework, testing the null hypothesis H0 : τ = τ0 is equivalent to the testing the
null hypothesis H0 : φτ0 = 0. Therefore, by the definition of (X)RVq∗,α(τ), it immediately follows that
XRVq∗,α(τ) = XRV1,α(φτ∗) and that RVq∗,α(τ) = RV1,α(φτ∗), where τ∗ = (1−q∗)τ̂res. We now have to show
that:

XRV≥q∗,α(τ) = min{XRV1,α(φτ∗), XRV1,α(θ)}, (79)

RV≥q∗,α(τ) = min{RV1,α(φτ∗), RV1,α(θ)}. (80)

That is, in words, that when we are interested in biases as large or larger than a certain amount, the (X)RV
of the IV estimate is bounded by the the (X)RV of the first stage evaluated at the zero null.

To see why this is the case, consider the possible shapes of the adjusted AR confidence interval CImax
1−α,R2(τ).

The interval is obtained by solving the following quadratic equation,(
θ̂2res − v̂ar(θ̂res)×

(
t†max
α,df −1,R2

)2)
︸ ︷︷ ︸

a

τ20 + 2

(
ĉov(λ̂res, θ̂res)×

(
t†max
α,df −1,R2

)2
− λ̂resθ̂res

)
︸ ︷︷ ︸

b

τ0

+

(
λ̂2res − v̂ar(λ̂res)×

(
t†max
α,df −1,R2

)2)
︸ ︷︷ ︸

c

≤ 0. (81)
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Here df = n − p − 1. Now let r = {rmin, rmax} denote the roots of the quadratic equation, which can be
written as r = −b ±

√
∆/2a, with ∆ = b2 − 4ac. If a > 0, the quadratic equation will be convex, and

thus only the values between the roots will be non-positive. This leads to the connected confidence interval
CImax

1−α,R2(τ) = [rmin, rmax]. When a < 0, the curve is concave and this leads to unbounded confidence
intervals. Here we have two sub-cases: (i) when ∆ < 0, the quadratic curve never touches zero, and thus
the confidence interval is simply the whole real line CImax

1−α,R2(τ) = (−∞,+∞); and, (ii) when ∆ > 0 the

confidence interval will be union of two disjoint intervals CImax
1−α,R2(τ) = (−∞, rmin] ∪ [rmax,+∞).1 In both

cases, arbitrarily large negative or positive values are part of the confidence interval, which is important for
our discussion.

Thus we have the following conclusion: whenever CImax
1−α,df −1(τ) is connected, we must have the same

solution as before, namely, that the (X)RV of the IV estimate equals the (X)RV of the AR regression
evaluated at the zero null with the appropriate outcome transformation. However, as discussed above,
biases arbitrary larger than q∗ can happen when the AR confidence interval is unbounded. Unbounded
intervals occur if and only if a < 0, which is equivalent to t2

θ̂res
≤ (t†max

α,df −1,R2)2. This is precisely the same

condition for the (extreme) robustness value of the first stage evaluated at the zero null. Therefore, the
(X)RV for IV, considering biases as large or larger than a certain amount, must be the minimum of these
two values.

G Comparison with traditional approaches

Traditional approaches for the sensitivity of IV have focused on parameterizing the bias of the IV estimate
with a single coefficient that summarizes how strongly the instrument relates to the outcome “not through”
the treatment. For example, Conley et al. (2012) considers the model (for simplicity, we omit covariates X):

Yi = τDi + ηZi + εi, (82)

where τ is the parameter of interest, and cov(Zi, εi) = 0. Here, the coefficient η is a sensitivity parameter
that directly summarizes violations of instrument validity. To recover the target parameter τ , it thus suffices
to subtract η from the reduced-form regression coefficient λ,

τ =
λ− η
θ

. (83)

Inference for the above estimand can be done in numerous ways. At a given choice of η, one could simply
subtract the postulated bias from the reduced form estimate; similarly, confidence intervals can be obtained
using the delta-method. Another popular, and computationally simpler alternative is to construct an auxil-
iary outcome Yη := Y − ηZ, and then proceed with any of the estimation methods discussed here (e.g, 2SLS
or Anderson-Rubin regression) using the auxiliary variable Yη instead of Y .

Applying this approach to our running example we reach the correct, but perhaps trivial conclusion that,
in order to bring the causal effect estimate to zero (τ = 0), all of the reduced-form estimate (4.2%) must
be due to the effects of proximity to college on income, not through its effect on years of schooling, i.e.
η = 4.2%. Other approaches, although different in details, can be understood in similar terms. For instance,
starting from a potential outcomes framework, Wang et al. (2018) obtains a similar sensitivity model as
Equation (82), and derive the distribution of the Anderson-Rubin statistic for a given postulated value of η.

In contexts where researchers can make direct plausibility judgments about the coefficient η, these
approaches offer a simple and useful sensitivity analysis. In many cases, however, such as in our running
example, violations of instrument validity arise due to many possible confounding variables acting in concert,
such as family wealth, high school quality, and regional indicators. How can we reason whether all these

1See Mehlum (2020) for an intuitive graphical characterization of Fieller’s solutions using polar coordinates.
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variables are strong enough to bring about an η ≈ 4.2%? The OVB approach we present here change
the focus from η to the omitted variables W . That is, instead of asking for direct judgments about η,
the OVB approach reveals what one must believe about the maximum explanatory power of such omitted
variables in order for them to be problematic. Here W consists of the necessary set of variables to block
both confounding between the instrument and the outcome, as well as blocking paths from the instrument
to the outcome, not through the treatment (e.g, see Figure 2).

Finally, it is worth mentioning that these two approaches are not necessarily mutually exclusive. To
illustrate, suppose we have a structural model

Yi = τDi + ηZi + γW + εi. (84)

Here suppose η now effectively stands for the direct effect of Z on Y , not through D nor W . If plausibility
judgments on the direct effect of Z are available, we can leverage such knowledge by first subtracting this
off and then employing all OVB-based tools we have presented in this paper to perform sensitivity analysis
with respect to the remaining bias due to W .

H Supplementary Results for the Empirical Example

H.1 Minimal reporting and sensitivity contours of the reduced form

Table 1 shows our proposal for a minimal sensitivity reporting of the reduced-form estimate (here, the effect
of Proximity on Earnings). Beyond the usual statistics such as the point estimate, standard-error and t-
value, we recommend that researchers also report the: (i) partial R2 of the instrument with the outcome
(R2

Y∼Z|X = 0.18%), as well as (ii) the robustness value (RVq∗,α = 0.67%), and (iii) the extreme robustness

value (XRVq∗,α = 0.05%), both for where the confidence interval would cross zero (q∗ = 1), at a chosen
significance level (here, α = 0.05).

Outcome: Earnings (log)

Instrument Estimate Std. Error t-value R2
Y∼Z|X XRVq∗,α RVq∗,α

Proximity 0.042 0.018 2.33 0.18% 0.05% 0.67%

Bound (1x SMSA): R2
Y∼W |Z,X = 2%, R2

W∼Z|X = 0.6%, t†max
α,df −1,R2 = 2.55

Note: df = 2994, q∗ = 1, α = 0.05

Table 1: Minimal sensitivity reporting of the reduced-form regression.

In our running example, the RV reveals that confounders explaining 0.67% of the residual variation both
of proximity and of (log) Earnings are already sufficient to make the reduced-form estimate statistically
insignificant. Further, the XRV and the R2

Y∼Z|X show that, if we are not willing to impose constraints

on the partial R2 of confounders with the outcome, they need only explain 0.05% of the residual variation
instrument to “lose significance,” or 0.18% to fully eliminating the point estimate. To aid users in making
plausibility judgments, the note of Table 1 provides the maximum strength of unobserved confounding if it
were as strong as SMSA (an indicator variable for whether the individual lived in a metropolitan region)

along with the bias-adjusted critical value for a confounder with such strength, t†max
α,df −1,R2 = 2.55. Since

the observed t-value (2.33) is less than the adjusted critical threshold of 2.55, this immediately reveals
that confounding as strong as SMSA (e.g. residual geographic confounding) is sufficiently strong to be
problematic.

Beyond the results of Table 1, researchers can also explore sensitivity contour plots of the t-value for
testing the null hypothesis of zero effect, while showing different bounds on strength of confounding, under
different assumptions of how they compare to the observed variables. This is shown in Figure 1a. The
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(a) Sensitivity contours of the reduced form.
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(b) Sensitivity contours of the first stage.

Figure 1: Sensitivity contour plots of the reduced form and first stage.

horizontal axis describes the partial R2 of the confounder with the instrument whereas the vertical axis
describes the partial R2 of the confounder with the outcome. The contour lines show the t-value one
would have obtained, had a confounder with such postulated strength been included in the reduced-form
regression. The red dashed line shows the statistical significance threshold, and the red diamonds places
bounds on strength of confounding as strong as Black (an indicator for race) and, again, SMSA. As we can
see, confounders as strong as either Black or SMSA are sufficient to bring the reduced form, and hence also
the IV estimate, to a region which is not statistically different from zero. Since it is not very difficult to
imagine residual confounders as strong or stronger than those (e.g., parental income, finer grained geographic
location, etc), these results for the reduced form already call into question the reliability of the instrumental
variable estimate.

H.2 Minimal reporting and sensitivity contours of the first stage

Table 2 performs the same sensitivity exercises for the regression of Education (treatment) on Proximity
(instrument). As expected, the association of proximity to college with years of education is stronger
than its association with earnings. This is reflected in the robustness statistics, which are slightly higher
(R2

D∼Z|X = 0.44%, XRVq∗,α = 0.31% and RVq∗,α = 3.02%). Confounding as strong as SMSA would not be
sufficiently strong to bring the first-stage estimate to a region where it is not statistically different than zero.

Treatment: Education (years)

Instrument Estimate Std. Error t-value R2
D∼Z|X XRVq∗,α RVq∗,α

Proximity 0.32 0.088 3.64 0.44% 0.31% 3.02%

Bound (1x SMSA): R2
D∼W |Z,X = 0.5%, R2

Z∼W |X = 0.6%, t†max
α,df −1,R2 = 2.26

Note: df = 2994, q∗ = 1, α = 0.05

Table 2: Minimal sensitivity reporting of the first-stage regression.

Figure 1b supplements those analysis with the sensitivity contour plot for the t-value of the first-stage
regression. Here the horizontal axis still describes the partial R2 of the confounder with the instrument,
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but now the vertical axis describes the partial R2 of the confounder with the treatment. The plot reveals
that, contrary to the reduced form, the first stage survives confounding once or twice as strong as Black or
SMSA.

I Data on the use of sensitivity for IV

We collected data from all papers published in the American Economic Review during the year of 2020. If
the paper performed an instrumental variable analysis, even if it was not the main analysis of the paper, we
coded this as a paper using IV. Of this subset, we then checked whether the paper performed or mentioned
any type sensitivity analysis against violations of the exclusion or independence restrictions.

J Connections to Frost (1979)

Here we briefly discuss the connection of our OVB formula with that of Frost (1979). Using our notation,
Frost’s formula can be written as:

|λ− λr| = |γ|
√
R2
Z∼W |X ×

sd(W⊥X)

sd(D⊥X)
.

Notice that Frost’s formula has three sensitivity parameters related to the omitted variable W : (1) the
regression coefficient of W in the long regression of the outcome γ; (2) the residual standard deviation of
W after adjusting for the remaining covariates; and (3) the partial correlation of W with the independent
variable of interest.

This parameterization has some shortcomings for sensitivity analysis. For instance, these three sensitivity

parameters are not variation independent. That is, fixing
√
R2
Z∼W |X constrains the feasible region of the

product |γ| × sd(W⊥X), which is now upper bounded by

(
1√

1−R2
Z∼W |X

× sd(Y ⊥Z,X)
sd(D⊥X)

)
. Thus, for instance,

a naive use of Frost’s formula could lead to bounds larger than they need to be. Moreover, for the same
reason, Frost’s parameterization does not immediately reveal that bounding R2

Z∼W |X alone is sufficient to
bounds the bias, a key component for deriving some of the robustness metrics we propose in the paper, such
as the XRV.

K Connections to over-identification tests

Our focus in this paper is on the just-identified case with one instrument and one treatment. The presence
of multiple putative instruments, however, can be used to perform test instrument validity, provisional on
the condition that at least some of the instruments are valid. Here we discuss some connections between
over-identification tests and our proposal for sensitivity analysis.

First, if a researcher performs an over-identification test, and this test rejects that all instruments are
valid, then this would provide a very compelling justification for running the sensitivity analysis of the type
we propose in this paper—the data itself already points out that some invalid instruments must be present,
and, therefore, result should not be taken at face value. We also note, however, that failing to reject that
the instruments are valid does not mean the instruments are indeed valid, and unobserved confounding can
still be a concern.

Another potential connection with our approach is that it may be possible to extend our sensitivity
analysis to perform over-identification tests not to assess the exact validity of multiple instruments, but to
assess whether multiple instruments are all approximately valid, within certain bounds. We leave further
examination of sensitivity analysis with multiple instruments to future work.
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L Supplementary Tables and Figures
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Figure 2: Causal diagrams illustrating traditional IV assumptions. Directed arrows, such as X → Y , denote a possible
direct causal effect of X on Y . Bidirected arrows, such as D ↔ Y , stand for latent common causes between D and Y .
In Figure 2a, X is sufficient for rendering Z a valid instrumental variable. In Figures 2b and 2c, however, W is also
needed to render Z a valid IV, either because it confounds the instrument-outcome relationship (Fig. 2b) or because
it is a side-effect of the instrument affecting the outcome other than through its effect of on the treatment (Fig. 2c).
In practice, all these violations will be happening simultaneously.

Dependent variable:

Education Earnings (log)

FS RF OLS IV

(1) (2) (3) (4)

Proximity 0.320∗∗∗ 0.042∗∗

(0.088) (0.018)

Education 0.075∗∗∗ 0.132∗∗

(0.003) (0.055)

Black −0.936∗∗∗ −0.270∗∗∗ −0.199∗∗∗ −0.147∗∗∗

(0.094) (0.019) (0.018) (0.054)

SMSA 0.402∗∗∗ 0.165∗∗∗ 0.136∗∗∗ 0.112∗∗∗

(0.105) (0.022) (0.020) (0.032)

Other covariates yes yes yes yes

Observations 3,010 3,010 3,010 3,010
R2 0.477 0.195 0.300 0.238

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Results of Card (1993). Columns show estimates and standard errors (in parenthesis) of the First Stage
(FS), Reduced Form (RF), Ordinary Least Squares (OLS) and Indirect Least Squares/Two-Stage Least Squares (IV).
Black is an indicator of race; SMSA an indicator for whether the individual lived in a metropolitan area. Following
Card (1993), other covariates include age, regional indicators, experience and experience squared.
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R2
Z∼W |X/R2

Y∼W |Z,X 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0.05 3.58 4.20 4.66 5.04 5.37 5.66 5.91 6.15 6.36 6.55 6.73 6.89 7.04 7.17 7.29 7.39 7.47 7.52 7.52
0.1 4.37 5.29 5.99 6.56 7.06 7.50 7.90 8.27 8.60 8.91 9.20 9.47 9.72 9.95 10.16 10.35 10.52 10.65 10.74
0.15 5.04 6.22 7.10 7.84 8.48 9.05 9.57 10.05 10.49 10.90 11.28 11.63 11.97 12.28 12.57 12.83 13.07 13.27 13.42
0.2 5.67 7.08 8.14 9.03 9.80 10.49 11.12 11.70 12.23 12.73 13.20 13.63 14.04 14.43 14.79 15.12 15.43 15.69 15.90
0.25 6.29 7.92 9.16 10.19 11.09 11.89 12.63 13.30 13.93 14.51 15.06 15.57 16.06 16.51 16.94 17.34 17.71 18.04 18.30
0.3 6.91 8.77 10.18 11.35 12.38 13.30 14.14 14.91 15.62 16.30 16.92 17.52 18.08 18.60 19.10 19.56 19.99 20.38 20.70
0.35 7.56 9.64 11.23 12.55 13.71 14.74 15.69 16.56 17.37 18.13 18.84 19.51 20.15 20.75 21.31 21.84 22.34 22.78 23.16
0.4 8.24 10.57 12.33 13.81 15.10 16.26 17.32 18.29 19.20 20.05 20.85 21.60 22.31 22.99 23.63 24.23 24.78 25.30 25.73
0.45 8.97 11.55 13.51 15.16 16.59 17.88 19.05 20.14 21.15 22.09 22.99 23.83 24.62 25.38 26.09 26.77 27.40 27.97 28.47
0.5 9.77 12.63 14.80 16.62 18.21 19.64 20.94 22.15 23.27 24.32 25.31 26.25 27.13 27.98 28.77 29.52 30.23 30.88 31.44
0.55 10.67 13.83 16.23 18.25 20.01 21.59 23.04 24.37 25.62 26.79 27.89 28.93 29.91 30.85 31.74 32.58 33.36 34.09 34.73
0.6 11.68 15.19 17.86 20.09 22.05 23.81 25.41 26.90 28.28 29.58 30.80 31.96 33.06 34.10 35.09 36.03 36.91 37.72 38.44
0.65 12.87 16.77 19.74 22.24 24.42 26.38 28.17 29.82 31.37 32.82 34.18 35.48 36.70 37.87 38.98 40.03 41.01 41.93 42.74
0.7 14.29 18.67 22.01 24.80 27.25 29.45 31.46 33.32 35.06 36.69 38.22 39.68 41.06 42.37 43.62 44.81 45.92 46.96 47.88
0.75 16.07 21.04 24.83 28.00 30.78 33.28 35.56 37.68 39.65 41.50 43.25 44.91 46.48 47.97 49.39 50.74 52.02 53.20 54.26
0.8 18.41 24.16 28.54 32.20 35.42 38.31 40.95 43.39 45.68 47.82 49.84 51.76 53.58 55.32 56.96 58.53 60.01 61.39 62.62
0.85 21.77 28.61 33.82 38.19 42.02 45.47 48.61 51.53 54.25 56.81 59.22 61.51 63.68 65.75 67.72 69.59 71.36 73.01 74.50
0.9 27.25 35.88 42.46 47.97 52.80 57.15 61.12 64.80 68.24 71.46 74.51 77.40 80.15 82.77 85.26 87.62 89.86 91.96 93.85
0.95 39.37 51.90 61.47 69.48 76.51 82.83 88.61 93.97 98.97 103.67 108.11 112.31 116.32 120.13 123.76 127.21 130.48 133.54 136.31

Table 4: Bias adjusted critical values: df = 1, 00016
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Replication File - An Omitted Variable Bias Framework for
Sensitivity Analysis of Instrumental Variables

Carlos Cinelli and Chad Hazlett

2024-11-28

Main Text

Package and data

First install the package from GitHub, available at https://github.com/carloscinelli/iv.sensemakr.

# loads package
library(iv.sensemakr)

# loads and prepare dataset
data("card")
y <- card$lwage # outcome
d <- card$educ # treatment
z <- card$nearc4 # instrument
x <- model.matrix( ~ exper + expersq + black + south + smsa + reg661 + reg662 + reg663 +

reg664 + reg665+ reg666 + reg667 + reg668 + smsa66,
data = card) # covariates

Anderson-Rubin regression

Fitting the Anderson-Rubin regression.

# fits IV model
card.fit <- iv_fit(y,d,z,x)
card.fit

##
## Instrumental Variable Estimation
## (Anderson-Rubin Approach)
## =============================================
## IV Estimates:
## Coef. Estimate: 0.132
## t-value: 2.33
## p-value: 0.02
## Conf. Interval: [0.025, 0.285]
## Note: H0 = 0, alpha = 0.05, df = 2994.
## =============================================
## See summary for first stage and reduced form.
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Sensitivity Analysis

Sensitivity analysis results in the main text.

# runs sensitivity analysis
card.sens <- sensemakr(card.fit, benchmark_covariates = c("black", "smsa"))

# sensitivity statistics
all.stats <- sensitivity_stats(card.sens,parm = c("iv", "fs", "rf"))
round(all.stats, 4)[1:6]

## estimate lwr upr t.value xrv_qa rv_qa
## iv 0.1315 0.0248 0.2848 2.3271 0.0005 0.0067
## fs 0.3199 0.1476 0.4922 3.6408 0.0031 0.0302
## rf 0.0421 0.0066 0.0775 2.3271 0.0005 0.0067

# benchmarking
iv.bounds <- card.sens$bounds$iv
iv.bounds[-1] <- round(iv.bounds[-1], 4)
iv.bounds

## bound_label r2zw.x r2y0w.zx lwr upr t.dagger
## 1 1x black 0.0022 0.0750 -0.0212 0.4019 2.5942
## 2 1x smsa 0.0064 0.0202 -0.0192 0.3958 2.5710

# sensitivity contour plot for AR
plot(card.sens, lim = 0.08)
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Appendix – sensitivity of the Reduced Form

# sensitivity statistics
round(sensitivity_stats(card.sens, parm = "rf")[1:6], 4)

## estimate lwr upr t.value xrv_qa rv_qa
## rf 0.0421 0.0066 0.0775 2.3271 0.0005 0.0067

# benchmarking
rf.bounds <- card.sens$bounds$rf
rf.bounds[-1] <- round(rf.bounds[-1], 4)
rf.bounds

## bound_label r2zw.x r2yw.zx lwr upr t.dagger
## 1 1x black 0.0022 0.0657 -0.0042 0.0883 2.5583
## 2 1x smsa 0.0064 0.0197 -0.0043 0.0884 2.5645

# sensitivity contour plot for RF
plot(card.sens, parm = "rf", sensitivity.of = "t-value", lim = 0.08, kz = 1, ky = 1)
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Appendix – sensitivity of the First Stage

# sensitivity statistics
round(sensitivity_stats(card.sens, parm = "fs")[1:6], 4)

## estimate lwr upr t.value xrv_qa rv_qa
## fs 0.3199 0.1476 0.4922 3.6408 0.0031 0.0302

# benchmarking
fs.bounds <- card.sens$bounds$fs
fs.bounds[-1] <- round(fs.bounds[-1], 4)
fs.bounds

## bound_label r2zw.x r2dw.zx lwr upr t.dagger
## 1 1x black 0.0022 0.0334 0.1089 0.5309 2.4014
## 2 1x smsa 0.0064 0.0050 0.1202 0.5195 2.2723

# sensitivity contour plot for FS
plot(card.sens, parm = "fs", sensitivity.of = "t-value", lim = 0.08, kz = 2, kd = 2)
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