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Abstract

This tutorial introduces the package sensemakr for R and Stata, which implements a suite
of sensitivity analysis tools for regression models developed in Cinelli and Hazlett (2020,
2022). Given a regression model, sensemakr can compute sensitivity statistics for routine
reporting, such as the robustness value, which describes the minimum strength that un-
observed confounders need to have to overturn a research conclusion. The package also
provides plotting tools that visually demonstrate the sensitivity of point estimates and
t-values to hypothetical confounders. Finally, sensemakr implements formal bounds on
sensitivity parameters by means of comparison with the explanatory power of observed
variables. All these tools are based on the familiar “omitted variable bias” framework, do
not require assumptions regarding the functional form of the treatment assignment mech-
anism nor the distribution of the unobserved confounders, and naturally handle multiple,
non-linear confounders. With sensemakr, users can transparently report the sensitivity
of their causal inferences to unobserved confounding, thereby enabling a more precise,
quantitative debate as to what can be concluded from imperfect observational studies.

Keywords: causal inference, sensitivity analysis, omitted variable bias, robustness value,
R, Stata, bounds.

1. Introduction

Across disciplines, investigators face the perennial challenge of making and defending causal
claims using observational data. The most common identification strategy in these circum-
stances is to adjust for a set of observed covariates deemed sufficient to control for confound-
ing, with linear regression remaining among the most popular statistical method for making
such adjustments. Researchers who argue that a regression coefficient unbiasedly reflects a
causal relationship must also be able to argue that there are no unobserved confounders—a
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difficult or impossible assumption to defend in most applied settings.1 What value can we
draw from these studies, knowing that this ideal condition is likely to fail? Fortunately, the
assumption of zero unobserved confounding need not hold precisely for an observational
study to remain substantively informative. In these cases, sensitivity analyses play a useful
role by allowing researchers to quantify how strong unobserved confounding needs to be in
order to substantially change a research conclusion, and by aiding in determining whether
confounding of such strength is plausible.

Although numerous methods for sensitivity analyses have been proposed, these tools are
still under-utilized.2 As argued in Cinelli and Hazlett (2020), several reasons may contribute
to the low adoption of these methods. First, many of these methods impose complicated and
strong assumptions regarding the nature of the confounder, which many users cannot or are
not willing to defend. Second, while users routinely report regression tables or coefficient
plots, until recently investigators have lacked “standard” quantities that can easily and
correctly summarize the robustness of a regression coefficient to unobserved confounding.
Finally, connecting the results of a formal sensitivity analysis to a cogent argument about
what types of confounders may exist in one’s research project remains difficult, particularly
when there are no compelling arguments as to why the treatment assignment should be
approximately “ignorable,” “exogeneous,” or “as-if random.”

This tutorial introduces the R and Stata package sensemakr (Cinelli et al., 2020a,b),
which implements a suite of sensitivity analysis tools proposed in Cinelli and Hazlett (2020)
to address these challenges, in the context of regression adjustment using ordinary least
squares (OLS). Within the familiar regression framework and without the need for additional
assumptions (beyond those that justified using OLS in the first place), sensemakr enables
analysts to easily answer a variety of common sensitivity questions, such as:

• How strong would an unobserved confounder (or a group of confounders) have to be
to change a research conclusion?

• In a worst-case scenario, how robust are the results to all unobserved confounders
acting together, possibly non-linearly?

• How strong would confounding need to be, relative to the strength of observed covari-
ates, to change the answer by a certain amount?

Specifically, given a full regression model, or simply standard statistics found in conven-
tional regression tables, sensemakr is able to: (i) compute sensitivity statistics for routine
reporting, such as the robustness value describing the minimum strength that unobserved
confounders would need to have to overturn the research conclusions; (ii) provide graphi-
cal tools that enable users to visually explore the implications of unobserved confounding,

1. This condition is also known as “selection on observables,” “conditional igorability,” “conditional exo-
geneity,” “conditional exchangeability,” or “backdoor admissibility” (Angrist and Pischke, 2008; Pearl,
2009; Imbens and Rubin, 2015; Hernán and Robins, 2020).

2. Dating back to at least Cornfield et al. (1959), a partial list of sensitivity analysis proposals includes
Rosenbaum and Rubin (1983); Robins (1999); Frank (2000); Rosenbaum (2002); Imbens (2003); Brum-
back et al. (2004); Frank et al. (2008); Hosman et al. (2010); Imai et al. (2010); Vanderweele and Arah
(2011); Blackwell (2013); Frank et al. (2013); Carnegie et al. (2016); Dorie et al. (2016); Middleton et al.
(2016); Oster (2017); Cinelli et al. (2019); AlexanderM. Franks and Feller (2020).

2



sensemakr: Sensitivity Analysis Tools for OLS

such as contour plots showing adjusted point estimates and t-values under confounding of
various strengths, as well as plots showing adjusted estimates under extreme (pessimistic)
scenarios; and (iii) place formal bounds on the maximum strength of confounding, based on
plausibility judgments regarding how unobserved confounders compare with observed vari-
ables. These tools do not require additional assumptions regarding the functional form of
the treatment assignment mechanism nor on the distribution of the unobserved confounders,
and naturally handle multiple confounders, possibly acting non-linearly.

In what follows, Section 2 briefly reviews the omitted variable bias framework for sen-
sitivity analysis developed in Cinelli and Hazlett (2020), which provides the theoretical
foundations for the tools in sensemakr. Next, Section 3 describes the basic functionality
and provides a practical introduction to sensitivity analysis using sensemakr for R. Section 4
describes advanced usage of the R package, and shows how to leverage individual functions
for customized sensitivity analyses. Finally, Section 5 describes sensemakr for Stata, and
Section 6 concludes with a brief discussion of what sensitivity analysis can and cannot do
in practice.

2. Sensitivity analysis in an omitted variable bias framework

In this section, we briefly review the omitted variable bias (OVB) framework for sensitiv-
ity analysis presented in Cinelli and Hazlett (2020). This method builds on a scale-free
reparameterization of the OVB formula in terms of partial R2 values, which allows us to:
(i) assess the sensitivity of point estimates, t-values, and confidence intervals under the
same conceptual framework; (ii) easily assess the sensitivity of multiple confounders acting
together, possibly non-linearly; (iii) exploit knowledge of the relative strength of variables
to posit plausible bounds on unobserved confounding; and (iv) construct a set of summary
sensitivity statistics suitable for routine reporting.

2.1 The OVB framework

The starting point of our analysis is a “full” linear regression model of an outcome Y on a
treatment D, controlling for a set of covariates given by both X and Z,

Y = τ̂D + Xβ̂ + γ̂Z + ε̂full, (1)

where Y is an (n×1) vector containing the outcome of interest for each of the n observations
and D is an (n×1) treatment variable (which may be continuous or binary); X is an (n×p)
matrix of observed covariates including the constant; and Z is a single (n × 1) unobserved
covariate (we discuss how to extend results for a multivariate Z below).

Equation 1 is the regression model that the investigator wished she had run to obtain a
valid causal estimate of the effect of D on Y . Nevertheless, Z is unobserved. Therefore, the
feasible regression the investigator is able to estimate is the “restricted“ model omitting Z,
that is,

Y = τ̂resD + Xβ̂res + ε̂res. (2)

Given the discrepancy of what we wish to know and what we actually have, the main
question we would like to answer is: how do the observed point estimate and standard error
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of the restricted regression, τ̂res and ŝe(τ̂res), compare to the desired point estimate and
standard error of the full regression, τ̂ and ŝe(τ̂)?

2.1.1 OVB with the partial R2 parameterization

Define as b̂ias the difference between the full and restricted estimates, b̂ias := τ̂res − τ̂ .
Now let (i) R2

D∼Z|X denote the (sample) share of residual variance of the treatment D
explained by the omitted variable Z, after accounting for the remaining covariates X; and,
(ii) R2

Y∼Z|D,X denote the share of residual variance of the outcome Y explained by the

omitted variable Z, after accounting for X and D. Cinelli and Hazlett (2020) have shown
that these quantities are sufficient for determining the bias, adjusted estimate, and adjusted
standard errors of the full regression of Equation 1.

More precisely, the bias can be written as,

|b̂ias| =

√√√√R2
Y∼Z|D,X R2

D∼Z|X

1−R2
D∼Z|X

(
σ̂y.dx
σ̂d.x

)
=

√√√√R2
Y∼Z|D,X R2

D∼Z|X

1−R2
D∼Z|X

× ŝe(τ̂res)×
√

df. (3)

Here df stands for the degrees of freedom of the restricted regression actually run, and
σ̂y.dx, σ̂d.x denote the residual standard deviations of the outcome and treatment regressions
actually run. For computational convenience, it is possible to rewrite the bias formula in
terms of the classical standard error estimate, which is usually reported in regression tables.

Moreover, the classical estimated standard error of τ̂ can be recovered with,

ŝe(τ̂) =

√√√√1−R2
Y∼Z|D,X

1−R2
D∼Z|X

× ŝe(τ̂res)×

√(
df

df− 1

)
. (4)

Given hypothetical values of R2
D∼Z|X and R2

Y∼Z|D,X, Equations 3 and 4 allow investiga-

tors to examine the sensitivity of point estimates and standard-errors (and consequently
t-values, confidence intervals or p-values) to the inclusion of any omitted variable Z with
such strengths. Conversely, given a critical threshold deemed to be problematic, one can
find the strength of confounders capable of bringing about a bias reducing the adjusted
effect to that threshold. Another useful property of the OVB formula with the partial R2

parameterization is that the effect of R2
Y∼Z|D,X on the bias is bounded. This allows inves-

tigators to contemplate extreme sensitivity scenarios, in which the parameter R2
Y∼Z|D,X is

set to 1 (or another conservative value), and see what happens as R2
D∼Z|X varies.

2.2 Sensitivity statistics for routine reporting

The previous formulas can be used to assess the sensitivity of an estimate to confounders
with any hypothesized strength. However, making sensitivity analyses standard practice
benefits from simple and interpretable sensitivity statistics that can quickly summarize
the robustness of a study result to unobserved confounding. With this in mind, Cinelli
and Hazlett (2020) propose two main sensitivity statistics for routine reporting: (i) the
(observed) partial R2 of the treatment with the outcome, R2

Y∼D|X; and, (ii) the robustness
value, RVq,α. These statistics serve two main purposes:
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1. They can be easily displayed alongside other summary statistics in regression tables,
making sensitivity analysis to unobserved confounding simple, accessible, and stan-
dardized;

2. They can be easily computed from quantities found in a regression table, thereby
enabling readers and reviewers to assess the sensitivity of results they see in print,
even if the original authors did not perform sensitivity analyses.

2.2.1 The partial R22 of the treatment with the outcome

In addition to quantifying how much variation of the outcome is explained by the treatment,
the partial R2 of the treatment with the outcome also conveys how robust the point estimate
is to unobserved confounding in an “extreme scenario.” Specifically, suppose the unobserved
confounder Z explains all residual variance of the outcome, that is, RY∼Z|D,X = 1. For this
confounder to bring the point estimate to zero, it must explain at least as much residual
variation of the treatment as the residual variation of the outcome that the treatment
currently explains. Put differently, if RY∼Z|D,X = 1, then we must have that R2

D∼Z|X ≥
R2
Y∼D|X, otherwise this confounder cannot logically account for all the observed association

between the treatment and the outcome (Cinelli and Hazlett, 2020).

2.2.2 The Robustness Value

The second sensitivity statistic proposed in Cinelli and Hazlett (2020) is the robustness
value. The robustness value RVq,α quantifies the minimal strength of association that
the confounder needs to have, both with the treatment and with the outcome, so that a
confidence interval of level 1− α includes a change of q% of the current estimated value.

Let fq := q|fY∼D|X|, where |fY∼D|X| is the partial Cohen’s f of the treatment with
the outcome multiplied by the percentage reduction q deemed to be problematic.3 Also, let
|t∗α,df−1| denote the t-value threshold for a t-test with significance level of α and df−1 degrees

of freedom, and define f∗α,df−1 := |t∗α,df−1|/
√

df− 1. Finally, construct fq,α, which “deducts”
from fY∼D|X both the proportion of reduction q of the point estimate and the boundary
below which statistical significance is lost at the level of α. That is, fq,α := fq − f∗α,df−1.
We then have that RVq,α is given by (Cinelli and Hazlett, 2020, 2022),

RVq,α =



0, if fq,α < 0

1

2

(√
f4q,α + 4f2q,α − f2q,α

)
, if f∗α,df−1 ≤ fq < 1/f∗α,df−1

f2q − f∗2α,df−1
1 + f2q

, otherwise.

(5)

Any confounder that explains RVq,α% of the residual variance of both the treatment and of
the outcome is sufficiently strong to make the adjusted t-test not reject the null hypothesis
H0 : τ = (1−q)|τ̂res| at the α level (or, equivalently, sufficiently strong to make the adjusted
1 − α confidence interval include (1 − q)|τ̂res|). Likewise, a confounder with associations

3. The partial Cohen’s f2 can be written as f2
Y∼D|X = R2

Y∼D|X/(1−R2
Y∼D|X)
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lower than RVq,α is not capable of overturning the conclusion of such a test. Setting α = 1
returns the robustness value for the point estimate. Further details on how to interpret the
robustness value in practice are given in the next sections.

2.3 Bounds on the strength of confounding using observed covariates

Consider a confounder orthogonal to the observed covariates, ie., Z ⊥ X, or, equivalently,
consider only the part of Z not linearly explained by X. Now denote by Xj a specific
covariate of the set X and define

kD :=
R2
D∼Z|X−j

R2
D∼Xj |X−j

, kY :=
R2
Y∼Z|X−j ,D

R2
Y∼Xj |X−j ,D

. (6)

where X−j represents the vector of covariates X excluding Xj . That is, the terms kD
and kY represent how strong the confounder Z is relative to observed covariate Xj , where
“strength” is measured by how much residual variation they explain of the treatment (for
kD) and of the outcome (for kY ). Given kD and kY , we can rewrite the strength of the
confounders as (Cinelli and Hazlett, 2020),

R2
D∼Z|X = kDf

2
D∼Xj |X−j

, R2
Y∼Z|D,X ≤ η

2f2Y∼Xj |X−j ,D
, (7)

where η is a scalar which depends on kY , kD and R2
D∼Xj |X−j

.

These equations allow the investigator to assess the maximum bias that a hypothetical
confounder at most “k times” as strong as a particular covariate Xj could cause. This can
be used to explore the relative strength of confounding necessary for bias to have changed
the research conclusion. Furthermore, when the researcher has domain knowledge to argue
that a certain covariate Xj is particularly important in explaining treatment or outcome
variation, and that omitted variables cannot explain as much residual variance of D or Y
as that observed covariate, these results can be used to set plausible bounds in the total
amount of confounding. The same inequalities hold if one uses a group of variables for
benchmarking, by simply replacing the individual partial R2 with the group partial R2 of
those variables (we provide a novel derivation for this result in the appendix). Finally, we
note that an intuitive but informal benchmarking approach involves directly plugging in
R2
D∼Z|X = R2

D∼Xj |X−j
and R2

Y∼Z|D,X = R2
Y∼Xj |X−j ,D

instead of using (7). However, this

method can significantly underestimate the bias caused by a Z as strong as Xj . Section 4.1.3
discusses this issue further and provides a numerical example.

2.4 Multiple or non-linear confounders

Suppose that, instead of a single unobserved confounder Z, there are multiple unobserved
confounders Z = [Z1, Z2, . . . , Zk]. In this case, the regression the investigator wished she
had run becomes:

Y = τ̂D + Xβ̂ + Zγ̂ + ε̂full. (8)

As Cinelli and Hazlett (2020) show, the previous results considering a single unobserved
confounder are in fact conservative when considering the impact of multiple confounders,
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barring an adjustment in the degrees of freedom of Equation 4. Moreover, since the vector
Z is arbitrary, this can also accommodate non-linear confounders or even misspecification
of the functional form of the observed covariates X. In other words, to assess the maximum
bias that multiple, non-linear confounders could cause in our current estimates, it suffices to
think in terms of the maximum explanatory power that Z could have in the treatment and
outcome regressions, as parameterized by R2

D∼Z|X and R2
Y∼Z|D,X. To put it in another way,

it suffices to examine the impact of a single unmeasured confounder with that postulated
strength, as this scenario represents the maximum bias that multiple confounders of equal
strength could induce.

2.5 “Non-standard” standard errors

The previous results provide exact algebraic identities of how point estimates and classical
(homoskedastic) standard errors change due to the inclusion of Z. Researchers, however,
may also perform statistical inference using “non-standard” standard errors, such as using
robust standard errors or the nonparametric bootstrap.

Robust standard errors can be computed using the influence function of the bounds,
as derived in Chernozhukov et al. (2022). Inference using the nonparametric bootstrap
is also straightforward. It suffices to: (1) resample the data with replacement, and (2)

compute the bias adjusted estimate, i.e., τ̂± := τ̂r ± |b̂ias|, for each bootstrap resample.
Confidence intervals for τ± can then be constructed by using the desired percentile of
the bootstrapped samples (or, computing bootstrap standard errors and using a normal
approximation). Simple analytical expressions for RVq,α, such as Equation 5 for the classical
case, are unavailable when using robust standard errors or the bootstrap, thus RVq,α must
be evaluated numerically.

For simplicity of exposition, in the main text of this tutorial we focus on the classical
standard error case.4 In the appendix we showcase the use of “non-standard” standard
errors by replicating the running example using both the regular nonparametric bootstrap
and the cluster bootstrap.

3. sensemakr for R: Basic functionality

In this section we illustrate the basic functionality of sensemakr for R. Given that sensitivity
analysis requires contextual knowledge to be properly interpreted, we illustrate these tools
with a real example. We use sensemakr to reproduce all results found in Section 5 of Cinelli
and Hazlett (2020), which estimates the effects of exposure to violence on attitudes towards
peace, in Darfur, Sudan. Further details about this application and the data can be found
in Hazlett (2019).

3.1 Violence in Darfur: data and research question

In 2003 and 2004, the Darfurian government orchestrated a horrific campaign of violence
against civilians, killing an estimated two hundred thousand people. This application asks

4. In large samples, the bias term dominates sampling uncertainty, thus making the choice of standard
errors a second-order concern relative to the magnitude of omitted variable bias. This happens because
standard errors decrease at a

√
n rate, while the bias remains constant, regardless of sample size.
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whether, on average, being directly injured or maimed in this episode made individuals
more likely to feel “vengeful” and unwilling to make peace with those who perpetrated this
violence. Or, might those who directly suffered such violence be motivated to see it end,
supporting calls for peace?

The sensemakr package provides the data required for this example based on a survey
among Darfurian refugees in eastern Chad (Hazlett, 2019). The data were constructed from
a survey conducted between April and June of 2009 by the “Darfurian Voices” team with
support of the US Department of State, with the purpose of representing refugee voices
in the ongoing political processes. The full survey, initially including 1872 civilians, was
representative of adult refugees (eighteen years or older) from Darfur living in the twelve
Darfurian refugee camps in eastern Chad at the time of sampling. Due to the identification
approach taken here (see below), we must restrict analysis to the 1276 observations repre-
senting civilians who reported being present in their villages in Darfur during the time of
village attack, and thus subject to possibly being injured.

The “treatment” variable of interest is directlyharmed, which indicates whether the
individual was physically injured or maimed during the attack on her or his village in Darfur.
The main outcome of interest is peacefactor, an index measuring pro-peace attitudes.
Other covariates in the data include: village (a factor variable indicating the original
village of the respondent), female (a binary indicator of gender), age, herder dar (whether
they were a herder in Darfur), farmer dar (whether they were a farmer in Darfur), and
past voted (whether they report having voted in an earlier election, prior to the conflict).
For further details, see ?darfur.

To get started we first need to install the package. From within R, the sensemakr

package can be installed from the Comprehensive R Archive Network (CRAN).

install.packages("sensemakr")

After loading the package, the data can be loaded with the command data("darfur").

library(sensemakr)

data("darfur")

Hazlett (2019) argues that the purpose of these attacks was to punish civilians from
ethnic groups presumed to support the opposition and to kill or drive these groups out
so as to reduce this support. Violence against civilians included aerial bombardments by
the government as well as assaults by the Janjaweed, a pro-government militia. For this
example, suppose a researcher argues that, while some villages were more or less intensively
attacked, within village violence was largely indiscriminate. The bombings were crude,
could not be finely targeted below the level of village, and the strategic purpose of the
attacks was not kill or capture specific individuals. Similarly, the Janjaweed had no reason
to target certain individuals rather than others, and no information with which to do so,
with one major exception—women were targeted and often subjected to sexual violence.

Supported by these considerations, this researcher may argue that adjusting for village
and female is sufficient for control of confounding, and run the following linear regression
model (in which other pre-treatment covariates, although not necessary for identification,
are also included):
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Dependent variable:

peacefactor

directlyharmed 0.097∗∗∗

(0.023)

female −0.232∗∗∗

(0.024)

Observations 1,276
R2 0.512
Residual Std. Error 0.310 (df = 783)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1: OLS results for darfur.model. To conserve space, only the results for
directlyharmed and female are shown.

darfur.model <- lm(peacefactor ~ directlyharmed + village + female +

age + farmer_dar + herder_dar +

pastvoted + hhsize_darfur,

data = darfur)

This regression model results in the estimates shown in Table 1. According to this model,
those who were directly harmed in violence were on average more “pro-peace,” not less.

3.1.1 The threat of unobserved confounders

The previous estimate requires the assumption of no unobserved confounders for unbiased-
ness. While supported by the claim that there is no targeting of violence within village and
gender strata, other investigators may challenge this account. For example, although the
bombing was crude, perhaps bombs were still more likely to hit the center of the village, and
those in the center were also likely to hold different attitudes towards peace. Or, it could be
the case that the Janjaweed observed signals that indicate individual characteristics such
as wealth, and targeted using this information. Or perhaps an individual’s (prior) political
attitudes could have led them to take actions that exposed them to greater risk during the
attack. To complicate things, all these factors could interact with each other or otherwise
have other non-linear effects.

These concerns suggest that, instead of the previous linear model (darfur.model), we
should have run the ideal, but infeasible model:

darfur.complete.model <- lm(peacefactor ~ directlyharmed + village +

female + age + farmer_dar + herder_dar +

pastvoted + hhsize_darfur +

center*wealth*political_attitudes,

data = darfur)
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Where center*wealth*political attitudes indicates fully interacted terms for these
three variables. However trying to fit the model darfur.complete.model will result in
error, as none of the variables center, wealth or political attitudes were measured.

Given an assumption on how strongly omitted variables relate to the treatment and the
outcome, how would including them have changed our inferences regarding the coefficient of
directlyharmed? Or, what is the minimal strength that these unobserved confounders (or
all remaining unobserved confounders) need to have to change our previous conclusions?
Additionally, how can we leverage our contextual knowledge about the attacks to judge how
plausible such confounders are? For instance, given the limited opportunities for targeting
and the special role of gender in this case, if we assumed that unobserved confounding
cannot explain more than female, what would this imply about the maximum possible
strength of confounding? We show next how to use sensemakr to answer each of these
questions.

3.2 Violence in Darfur: sensitivity analysis

The main function in sensemakr for R is sensemakr(). This function performs the most
commonly required sensitivity analyses and returns an object of class sensemakr, which
can then be further explored with the print, summary and plot methods (see details in
?print.sensemakr and ?plot.sensemakr). We begin the analysis by applying sensemakr()

to the original regression model, darfur.model.

darfur.sensitivity <- sensemakr(model = darfur.model,

treatment = "directlyharmed",

benchmark_covariates = "female",

kd = 1:3,

ky = 1:3,

q = 1,

alpha = 0.05,

reduce = TRUE)

The arguments of this call are:

• model: the lm object with the outcome regression. In our case, darfur.model.

• treatment: the name of the treatment variable. In our case, "directlyharmed".

• benchmark covariates: the names of covariates that will be used to bound the
plausible strength of the unobserved confounders. Here, we put "female", which one
could argue to be among the main determinants of exposure to violence within village.
It was also found to be among the strongest determinants of attitudes towards peace
empirically. Variables considered as separate benchmarks can be passed as a single
character vector; variables that should be treated jointly as a group for benchmarks
should be passed as named list of character vectors.

• kd and ky: these arguments parameterize how many times stronger the confounder is
related to the treatment (kd) and to the outcome (ky) in comparison to the observed
benchmark covariate ("female"). In our example, setting kd = 1:3 and ky = 1:3
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means we want to investigate the maximum strength of a confounder once, twice,
or three times as strong as female (in explaining treatment and outcome variation).
When both kd and ky are vectors, as in the example, the vectors are evaluated consid-
ering each coordinate pair in sequence. For example, setting kd = 1:3 and ky = 1:3

is equivalent to evaluating the pairs (kd=1, ky=1), (kd=2, ky=2) and (kd=3, ky=3).
If only kd is given, ky will be set equal to it by default.

• q: this allows the user to specify what fraction of the effect estimate would have to
be explained away to be problematic. Setting q = 1 means that a reduction of 100%
of the current effect estimate (i.e. a true effect of zero) would be deemed problematic.
The default is q = 1.

• alpha: significance level of interest for making statistical inferences. The default is
alpha = 0.05.

• reduce: should we consider confounders acting towards increasing or reducing the
absolute value of the estimate? The default is reduce = TRUE, which means we are
considering confounders that pull the estimate towards (or through) zero. Setting
reduce = FALSE will consider confounders that pull the estimate away from zero.

Using the default arguments, one can simplify the previous call to

darfur.sensitivity <- sensemakr(model = darfur.model,

treatment = "directlyharmed",

benchmark_covariates = "female",

kd = 1:3)

After running sensemakr(), we can explore the sensitivity analysis results. We note that
the function sensemakr() also has formula and numeric methods. See ?sensemakr for
details.

3.2.1 Sensitivity statistics for routine reporting

The print method for sensemakr provides the original (observed) estimate along with three
summary sensitivity statistics suited for routine reporting: (1) the partial R2 of the treat-
ment with the outcome; (2) the robustness value (RV) required to reduce the estimate
entirely to zero (i.e. q = 1); and, (3) the RV beyond which the estimate would no longer be
statistically distinguishable from zero at the 5% level (q = 1, α = 0.05).

print(darfur.sensitivity)

Sensitivity Analysis to Unobserved Confounding

Model Formula: peacefactor ~ directlyharmed + village + female + age +

farmer_dar + herder_dar + pastvoted + hhsize_darfur

Observed Estimates of ’ directlyharmed ’:

Coef. estimate: 0.097
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Standard Error: 0.023

t-value: 4.18

Sensitivity Statistics:

Partial R2 of treatment with outcome: 0.022

Robustness Value, q = 1 : 0.139

Robustness Value, q = 1 alpha = 0.05 : 0.076

For more information, check summary.

The package also provides a function that creates a latex or html table with these results,
as shown in Table 2 (for the html table, simply change the argument to format = "html").

ovb_minimal_reporting(darfur.sensitivity, format = "latex")

Outcome: peacefactor

Treatment: Est. S.E. t-value R2
Y∼D|X RVq=1 RVq=1,α=0.05

directlyharmed 0.097 0.023 4.184 2.2% 13.9% 7.6%

df = 783 Bound (1x female): R2
Y∼Z|X,D = 12.5%, R2

D∼Z|X = 0.9%

Table 2: Minimal sensitivity analysis reporting.

Together these three sensitivity statistics provide the ingredients for a standard reporting
template proposed in Cinelli and Hazlett (2020). More precisely:

• The robustness value for bringing the point estimate of directlyharmed exactly to
zero (RVq=1) is 13.9%. This means that unobserved confounders that explain 13.9% of
the residual variance both of the treatment and of the outcome are sufficiently strong
to explain away all the observed effect. On the other hand, unobserved confounders
that do not explain at least 13.9% of the residual variance both of the treatment and
of the outcome are not sufficiently strong to do so.

• The robustness value for testing the hypothesis that the coefficient of directlyharmed
is zero (RVq=1,α=0.05) falls to 7.6%. This means that unobserved confounders that
explain 7.6% of the residual variance both of the treatment and of the outcome are
sufficiently strong to bring the lower bound of the confidence interval to zero (at the
chosen significance level of 5%). On the other hand, unobserved confounders that do
not explain at least 7.6% of the residual variance both of the treatment and of the
outcome are not sufficiently strong to do so.

• Finally, the partial R2 of directlyharmed with peacefactor means that, in an ex-
treme scenario, in which we assume that unobserved confounders explain all of the left
out variance of the outcome, these unobserved confounders would need to explain at
least 2.2% of the residual variance of the treatment to fully explain away the observed
effect.

12
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These quantities summarize what we need to know in order to safely rule out confounders
that are deemed to be problematic. Researchers can then argue as to whether they fall
within plausible bounds on the maximum explanatory power that unobserved confounders
could have in a given application.

Where investigators are unable to offer strong arguments limiting the absolute strength
of confounding, it can be productive to consider relative claims, for instance, by arguing
that unobserved confounders are likely not multiple times stronger than a certain observed
covariate. In our application, this is indeed the case. One could argue that, given the
nature of the attacks, it is hard to imagine that, within village, unobserved confounding
could explain much more of the residual variance of targeting than what is explained by
the observed variable female. The lower corner of the table, thus, provides bounds on
confounding as strong as female, R2

Y∼Z|X,D = 12.5%, and R2
D∼Z|X = 0.9%. Since both of

those are below the robustness value of RVq=1 = 13.9%, confounders as strong as female

are not sufficient to explain away the observed point estimate. Moreover, the bound on
R2
D∼Z|X is below the partial R2 of the treatment with the outcome, R2

Y∼D|X = 2.2%. This
means that even an extreme confounder explaining all residual variation of the outcome
and as strongly associated with the treatment as female is also not logically capable of
bringing the point estimate down to zero. For cases where one association is above the
RV and the other below it, such as for the case of the RVq=1,α=0.05 of 7.5%, we conduct
additional analyses as illustrated by the sensitivity contour plots we show next. As noted
in Section 2.4, these results are exact for a single unobserved confounder, and conservative
for multiple confounders, possibly acting non-linearly.

Finally, the summary method for sensemakr provides an extensive report with verbal
descriptions of all these analyses. Entering the command summary(darfur.sensitivity)

produces verbose output similar to the text explanations in the last several paragraphs (and
thus not reproduced here), so that researchers can directly cite or include such text in their
reports.

3.2.2 Sensitivity contour plots of point estimates and t-values

The minimal report of sensitivity results provided by Table 2 offers a useful summary of
how robust the current estimate is to unobserved confounding. Researchers can extend and
refine sensitivity analyses through plotting methods for sensemakr that visually explore
the whole range of possible estimates that confounders with different strengths could cause.
These plots can also represent different bounds on the plausible strength of confounding
based on different assumptions on how they compare to observed covariates.

We begin by examining the default plot type, contour plots for the point estimate.

plot(darfur.sensitivity)

The resulting plot is shown in the left panel of Figure 1. The horizontal axis shows
the residual share of variation of the treatment that is hypothetically explained by un-
observed confounding, R2

D∼Z|X. The vertical axis shows the hypothetical partial R2 of

unobserved confouding with the outcome, R2
Y∼Z|X,D. The contours show what estimate

for directlyharmed would have been obtained in the full regression model including unob-
served confounders with such hypothetical strengths. Note the plot is parameterized in way
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Figure 1: Sensitivity contour plots of point estimate (left) and t-value (right).

that hurts our preferred hypothesis, by pulling the estimate towards zero. Recall that the
direction of the bias was determined by the argument reduce = TRUE of the sensemakr()

call.
The bounds on the strength of confounding, determined by the parameter kd = 1:3 in

the call for sensemakr(), are also shown in the plot. The plot reveals that the direction
of the effect (positive) is robust to confounding once, twice or even three times as strong
as the observed covariate female, although in this last case the magnitude of the effect is
reduced to a third of the original estimate.

We now examine the sensitivity of the t-value for testing the null hypothesis of zero
effect by choosing the option sensitivity.of = "t-value" of the plot() method.

plot(darfur.sensitivity, sensitivity.of = "t-value")

The resulting plot is shown in the right of Figure 1. At the 5% significance level, the null
hypothesis of zero effect would still be rejected given confounders once or twice as strong
as female. However, while the point-estimate remains positive, accounting for sampling
uncertainty now means that the null hypothesis of zero effect would not be rejected with
the inclusion of a confounder three times as strong as female.

3.2.3 Sensitivity plots of extreme scenarios

Sometimes researchers may be better equipped to make plausibility judgments about the
strength of determinants of the treatment assignment mechanism, and have less knowledge
about the determinants of the outcome. In those cases, sensitivity plots using extreme
scenarios are a useful option. These are produced with the option type = "extreme".
Here one assumes confounding explains all or some large fraction of the residual variance
of the outcome, then vary how strongly such confounding is hypothetically related to the
treatment to see how this affects the resulting point estimate. One way to interpret this
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Figure 2: Sensitivity analysis to extreme scenarios.

plot in relation to the sensitivity contour plots of Figure 1 is to view it as fixing the vertical
axis at a specific high value (such as its maximum of 1) while varying the horizontal axis.

plot(darfur.sensitivity, type = "extreme")

Figure 2 shows the produced plot. By default these plots consider confounding that ex-
plains 100%, 75%, and 50% of the residual variance of the outcome, producing three sep-
arate curves. This is equivalent to setting the argument r2yz.dx = c(1, .75, .5). The
bounds on the strength of association of a confounder once, twice or three times as strongly
associated with the treatment as female are shown as red ticks in the horizontal axis. As
the plot shows, even in the most extreme case (R2

Y∼Z|X,D = 100%), confounders would need
to be more than twice as strongly associated with the treatment as female to fully explain
away the point estimate. Moving to the scenarios R2

Y∼Z|X,D = 75% and R2
Y∼Z|X,D = 50%,

confounders would need to be more than three times as strongly associated with the treat-
ment as female to fully explain away the point estimate.

3.2.4 Grouped benchmarks

Users can also use a group of variables collectively as benchmarks, by providing a named
list of character vectors to the benchmark covariates argument. Each character vector of
the list forms its own group. For example, an important application of grouping variables
is to benchmark categorical variables, such as village, which, in our case, consists of
485 dummy variables. The code below demonstrates how to perform this analysis. As
previously discussed, village and female are the main confounders in this application,
with village being the most important one. In fact, certain villages were singled out for
more or less violence and village also explain most of the differences in attitudes towards
peace. Thus, in this particular application, it is unlikely to imagine confounders even a
fraction as strong as village in explaining treatment and outcome variation (e.g, 10%-30%
as strong). However, if such confounder did exist, as shown on the left side of Figure 3,
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Figure 3: Sensitivity contours of the point estimate using grouped benchmarks: village

(left); female and pastvoted (right).

they would be strong enough to completely overturn the results (note kd and ky are set to
1/10, 2/10 and 3/10).

village <- grep(names(coef(darfur.model)), pattern = "village", value = T)

group.sens <- sensemakr(model = darfur.model,

treatment = "directlyharmed",

benchmark_covariates = list(village = village),

kd = c(.1, .2, .3))

plot(group.sens)

Another important application of grouped benchmarks is when using interaction terms.
In the appendix, we show how interaction terms can be incorporated by using the recentering
strategy suggested in Hirano and Imbens (2001). This recentering transforms the model in
a way such that the target parameter of inference is still a single regression coefficient. In
that setting, to fully capture the strength of female, we now need to consider both its main
term as well as its interaction term.

Finally, grouping can also be used to combine arbitrary confounders into a bundle. This
approach can be useful for constructing different, more conservative scenarios in which one
considers latent confounders of similar strength to the covariates in the group. For example,
the command below computes bounds on the maximum strength of confounding once, twice
or three times as strong as the combined explanatory power of the covariates female and
pastvoted. The names of the list are used for setting the benchmark labels in plots and
tables. As we can see in the right of Figure 3, though the impact of such a confounder would
be greater than female alone, the main conclusions of the study would still hold under this
scenario.

16



sensemakr: Sensitivity Analysis Tools for OLS

group.sens2 <- sensemakr(model = darfur.model,

treatment = "directlyharmed",

benchmark_covariates =

list(female_past = c("female", "pastvoted")),

kd = 1:3)

plot(group.sens2)

4. sensemakr for R: Advanced use

The standard functionality demonstrated in the previous section will suffice for most users,
most of the time. More flexibility can be obtained when needed by employing additional
functions, particularly:

• functions for computing the bias, adjusted estimates and standard errors: these com-
prise, among others, the functions bias(), adjusted estimate(), adjusted se()

and adjusted t(). They take as input the original (observed) estimate (in the form
of a linear model or numeric values) and a pair of sensitivity parameters (the partial
R2 of the omitted variable with the treatment and the outcome), and return the new
quantity adjusted for omitted variable bias.

• functions for computing sensitivity statistics: these comprise, among others, the func-
tions partial r2(), robustness value(), and sensitivity stats(). These func-
tions compute sensitivity statistics suited for routine reporting, as proposed in Cinelli
and Hazlett (2020). They take as input the original (observed) estimate (in the form
of a linear model or numeric values), and return the corresponding sensitivity statistic.

• sensitivity plots: ovb contour plot() and ovb extreme plot() allow estimation and
plotting of the contour and extreme scenario plots, respectively. The convenience
function add bound to contour() allows the user to place manually computed bounds
on contour plots. All plot functions return invisibly the data needed to replicate the
plot, so users can produce their own plots if preferred. The default options for plots
work best with width and height around 4 to 5 inches.

• bounding functions: ovb bounds() computes bounds on the maximum strength of
confounding “k times” as strong as certain observed covariates. The auxiliary function
ovb partial r2 bound() computes bounds for confounders by passing the values of
the partial R2 of the benchmarks directly.

We demonstrate the use of these functions below through examples chosen to illustrate
important features of sensitivity analysis.

4.1 Formal versus informal benchmarking: customizing bounds

Informal “benchmarking” procedures have been suggested as aids to interpretation for nu-
merous sensitivity analyses. These approaches are usually described as revealing how an
unobserved confounder Z “not unlike” some observed covariate Xj would alter the results
of a study (Imbens, 2003; Blackwell, 2013; Hosman et al., 2010; Carnegie et al., 2016; Dorie
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et al., 2016; Hong et al., 2018). As argued in Cinelli and Hazlett (2020), these informal
proposals may lead users to erroneous conclusions, even when they make correct supposi-
tions about how unobserved confounders compare to observed covariates. Here we replicate
Section 6.1 of Cinelli and Hazlett (2020) using sensemakr and provide a numerical example
illustrating the potential for misleading results from informal benchmarking. This example
also demonstrates advanced usage of the package, including how to construct sensitivity
contour plots with customized bounds.

4.1.1 Data and model

We begin by simulating the data generating process which will be used in our example,
as given by Equations 9 to 12 below. Here we have a treatment variable D, an outcome
variable Y , one observed confounder X, and one unobserved confounder Z. All disturbance
variables U are standardized mutually independent normals. Note that in this case, the
treatment D has no causal effect on Y .

Model 1:

Z = Uz (9)

X = Ux (10)

D = X + Z + Ud (11)

Y = X + Z + Uy (12)

Also note that, in this model: (i) the unobserved confounder Z is independent of X;
and, (ii) the unobserved confounder Z is exactly like X in terms of its strength of association
with the treatment and the outcome. The code below draws 100 samples from this data
generating process. We use the function resid maker() to make sure the residuals are
standardized and orthogonal, thus all properties that we describe here hold exactly even
with finite sample size. This function is provided by the package.

n <- 100

X <- scale(rnorm(n))

Z <- resid_maker(n, X)

D <- X + Z + resid_maker(n, cbind(X, Z))

Y <- X + Z + resid_maker(n, cbind(X, Z, D))

In this example, the investigator knows that she needs to adjust for the confounder Z but,
unfortunately, does not observe Z. Therefore, she is forced to fit the restricted linear model
adjusting for X only.

model.ydx <- lm(Y ~ D + X)

Results from this regression are shown in the first column of Table 3, showing a large
and statistically significant coefficient estimate for both D and X.

4.1.2 Formal benchmarks

Suppose the investigator correctly knows that: (i) Z and X have the same strength of
association with D and Y ; and, (ii) Z is independent of X. How can she leverage this
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Dependent variable:

Y
Restricted OLS Full OLS

(1) (2)

D 0.500∗∗∗ 0.000
(0.088) (0.102)

X 0.500∗∗∗ 1.000∗∗∗

(0.152) (0.144)

Z 1.000∗∗∗

(0.144)

Observations 100 100
R2 0.500 0.667
Residual Std. Error 1.240 (df = 97) 1.020 (df = 96)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: First column: results of the restricted regression adjusting for X only. Second
column: results of the full regression adjusting for X and Z.

information to understand how much bias a confounder Z “not unlike” X could cause? As
shown in Section 2.3, Equation 7 can be used to bound the maximum amount of confounding
caused by an unobserved confounder Z as strongly associated with the treatment D and
with the outcome Y as the observed covariate X.

Separately from the main sensemakr() function, these bounds can be computed with
the function ovb bounds(). In this function one needs to specify the linear model being used
(model = model.ydx), the treatment of interest (treatment = "D"), the observed variable
used for benchmarking (benchmark covariates = "X"), and how many times stronger Z
is in explaining treatment (kd = 1) and outcome (ky = 1) variation, as compared to the
benchmark variable X.

formal_bound <- ovb_bounds(model = model.ydx,

treatment = "D",

benchmark_covariates = "X",

kd = 1,

ky = 1)

We can now inspect the output of ovb bounds().

formal_bound[1:6]

bound_label r2dz.x r2yz.dx treatment adjusted_estimate adjusted_se

1 1x X 0.5 0.333 D 0 0.102
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As we can see, the results of the bounding procedure correctly shows that an unobserved
confounder Z, that is truly “not unlike X,” would: (1) explain 50% of the residual variation
of the treatment and 33% of the residual variation of the outcome; (2) bring the point
estimate exactly to zero; and, (3) bring the standard error to 0.102. This is precisely what
one obtains when running the full regression model adjusting for both X and Z, as shown
in the second column of Table 3.

4.1.3 Informal benchmarks

We now demonstrate an “informal benchmark” to show its dangers. Computing the bias due
to the omission of Z requires two sensitivity parameters: its partial R2 with the treatment
D and its partial R2 with the outcome Y . Informal approaches follow from the intuition
that we can simply take the observed associations of X with D and Y , found directly
from regressions for the treatment and the outcome, to “calibrate” the magnitude of the
sensitivity parameters of an unobserved confounder “not unlike” X. Unfortunately, as
formalized in Cinelli and Hazlett (2020), these observed associations are themselves affected
by the omission of the omitted variable, making naive comparisons potentially misleading.

What happens if we nevertheless attempt to use those observed statistics for benchmark-
ing? To compute the informal benchmarks, we first need to obtain the observed partial R2

of X with the outcome Y . This can be done using the partial r2() function of sensemakr
in the model.ydx regression.

r2yx.d <- partial_r2(model.ydx, covariates = "X")

We next need to obtain the partial R2 of X with the treatment D. For that, we need
to fit a new regression of the treatment D on the observed covariate X here denoted by
model.dx.

model.dx <- lm(D ~ X)

r2dx <- partial_r2(model.dx, covariates = "X")

We then determine what would be the implied adjusted estimate due to an unob-
served confounder Z with this pair of partial R2 values. This can be computed using
the adjusted estimate() function.

informal_adjusted_estimate <- adjusted_estimate(model = model.ydx,

treatment = "D",

r2dz.x = r2dx,

r2yz.dx = r2yx.d)

Let us now compare those informal benchmarks with the formal bounds. To pre-
pare, we first plot sensitivity contours with the function ovb contour plot(). Next, we
add the informal benchmark to the contours, using the numeric method of the function
add bound to contour(). Finally, we use add bound to contour() again to add the pre-
viously computed formal bounds.

# draws sensitivity contours

ovb_contour_plot(model = model.ydx, treatment = "D", lim = .6)
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Figure 4: Informal benchmarking versus proper bounds.

# adds informal benchmark

add_bound_to_contour(r2dz.x = r2dx, r2yz.dx = r2yx.d,

bound_value = informal_adjusted_estimate,

bound_label = "Informal benchmark")

# adds formal bound

add_bound_to_contour(bounds = formal_bound,

bound_label = "Formal bound")

Note how the results from informal benchmarking are misleading: the benchmark point
is still far from zero, which would suggest that an unobserved confounder Z “not unlike”
X is unable to explain away the observed effect, when in fact it is, as it was shown in
Table 3. This incorrect conclusion occurs despite the investigator correctly assuming both
that: (i) Z and X have the same strength of association with D and Y ; and, (ii) Z is
independent of X. Therefore, we do not recommend using informal benchmarks for sen-
sitivity analysis, and suggest researchers use formal approaches such as the ones provided
with ovb bounds(). For further details and discussion, see Sections 4.4 and 6.1 of Cinelli
and Hazlett (2020).

4.2 Assessing the sensitivity of existing regression results

We conclude this section by demonstrating how to replicate Section 3 using only the statis-
tics found in the regression table along with the individual functions available in the package.
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4.2.1 Sensitivity statistics

The robustness value and the partial R2 are key sensitivity statistics, useful for standard-
ized sensitivity analyses reporting. Beyond the main sensemakr() function, these statis-
tics can be computed directly by the user with the functions robustness value() and
partial r2(). With a fitted lm model in hand, the most convenient way to compute the
RV and partial R2 is by employing the lm methods for these functions, as in

robustness_value(model = darfur.model, covariates = "directlyharmed")

partial_r2(model = darfur.model, covariates = "directlyharmed")

However, when one does not have access to the data in order to run this model, simple
summary statistics such as: (i) the point estimate for the directlyharmed (0.097); (ii) its
estimated standard error (0.023); and, (ii) the degrees of freedom of the regression (783)
are sufficient to compute the RV and the partial R2.

robustness_value(t_statistic = 0.097/0.023, dof = 783)

partial_r2(t_statistic = 0.097/0.023, dof = 783)

The convenience function sensitivity stats() also computes all sensitivity statistics
for a regression coefficient of interest and returns them in a data.frame.

4.2.2 Plotting functions

All plotting functions can be called directly with lm objects or numerical data. For example,
the code below uses the function ovb contour plot() to replicate Figure 1 (without the
bounds) using only the summary statistics of Table 1.

ovb_contour_plot(estimate = 0.097, se = 0.023, dof = 783)

ovb_contour_plot(estimate = 0.097, se = 0.023, dof = 783,

sensitivity.of = "t-value")

The extreme scenario plots (as in Figure 2) can also be reproduced from summary
statistics using the function ovb extreme plot(),

ovb_extreme_plot(estimate = 0.097, se = 0.023, dof = 783)

All plotting functions return (invisibly) the data needed to reproduce them, allowing
users to create their own plots if they prefer.

4.2.3 Adjusted estimates, standard errors and t-values

These functions allow users to compute the adjusted estimates given different postulated de-
grees of confounding. For instance, suppose a researcher has reasons to believe a confounder
explains 10% of the residual variance of the treatment and 15% of the residual variance of
the outcome. If the underlying data are not available, the investigator can still compute the
adjusted estimate and t-value that one would have obtained in the full regression adjusting
for such confounder.
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Dependent variable:

directlyharmed

female −0.097∗∗∗

(0.036)

Observations 1,276
R2 0.426
Residual Std. Error 0.476 (df = 784)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: Treatment regression for the Darfur example. To conserve space only the results
for female are shown, which will be used for benchmarking.

adjusted_estimate(estimate = 0.097, se = 0.023, dof = 783,

r2dz.x = .1, r2yz.dx = 0.15)

[1] 0.0139

adjusted_t(estimate = 0.097, se = 0.023, dof = 783,

r2dz.x = .1, r2yz.dx = 0.15)

[1] 0.622

The results show this confounder is not strong enough to bring the estimate to zero, but
it is sufficient to bring the t-value below the usual 5% significance threshold of 1.96.

4.2.4 Computing bounds from summary statistics

Finally, we show how users can compute bounds on the strength of confounding using
only summary statistics, if the paper also provides a treatment regression table, i.e., a
regression of the treatment on all observed covariates. Such regressions are sometimes shown
in published works as part of efforts to describe the “determinants” of the treatment, or
as “balance tests” in which the investigator assesses whether observed covariates predict
treatment assignment. For the Darfur example, this regression is shown in Table 4 (only
the results for the coefficient of female is shown). Note that, for benchmarking purposes,
one needs to consider the regression of D on all X, and not only of D on Xj separately.

Using the results of Tables 1 and 4 we can compute the bounds on confounding 1, 2 and
3 times as strong as female, as we have done before. First we compute the partial R2 of
female with the treatment and the outcome

r2yxj.dx <- partial_r2(t_statistic = -0.232/0.024, dof = 783)

r2dxj.x <- partial_r2(t_statistic = -0.097/0.036, dof = 783)

Next, we compute the bounds on the partial R2 of the unobserved confounder using the
ovb partial r2 bound() function.

23



Cinelli, Ferwerda and Hazlett

bounds <- ovb_partial_r2_bound(r2dxj.x = r2dxj.x, r2yxj.dx = r2yxj.dx,

kd = 1:3, ky = 1:3,

bound_label = paste(1:3, "x", "female"))

Finally, the adjusted estimate() function computes the estimates implied by these
hypothetical confounders.

bound.values <- adjusted_estimate(estimate = 0.0973, se = 0.0232, dof = 783,

r2dz.x = bounds$r2dz.x,

r2yz.dx = bounds$r2yz.dx)

This information along with the numeric methods for the plot functions, allow us to
reproduce the contour plots of Figure 1 using only summary statistics. Note that, since we
are performing all calculations manually, appropriate limits of the plot area need to be set
by the user.

ovb_contour_plot(estimate = 0.0973, se = 0.0232, dof = 783, lim = 0.45)

add_bound_to_contour(bounds, bound_value = bound.values)

5. sensemakr for Stata

For Stata users, we have also developed a homonymous package sensemakr, which is avail-
able for download on SSC. The package can be installed as follows:

ssc install sensemakr, replace all

The main function of the Stata package is sensemakr, which is called using the format:

sensemakr depvar covar [if] [in], treat(varlist)

For consistency with the syntax of the well-known regress command, the first variable
is assumed to be the dependent variable, while the subsequent treatment variable and
covariates can appear in any order. The required argument is treat(varlist), which
indicates the treatment variable for which sensitivity analysis is conducted.

By default, sensemakr displays sensitivity statistics for routine reporting, as well as a
text interpretation of the results. Specifically, the output table reports three key values:
the partial R2 of the treatment with the outcome (R2yd.x), the robustness value (RV)
required to reduce the point estimate entirely to zero (if q= 1), and the RV beyond which
the estimate would no longer be statistically distinguishable from zero at the 5% level (q=
1, α= 0.05).

Should users wish to bound the plausible strength of unobserved confounders relative
to existing covariates, they can specify the option benchmark(varlist). benchmark()

can accept multiple covariates from the main specification, including time-series and factor
variables. If a benchmark is specified, sensemakr displays a bounds table. By default,
this bounds table displays estimates for a hypothetical confounder that is 1, 2, and 3
times as strong as each benchmark covariate in explaining residual variation in both the
treatment and the outcome, as well as adjusted coefficient estimates for the treatment if
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such a confounder were present. In addition to these bounds, the table displays treatment
coefficients under an “extreme scenario,” in which the confounder is assumed to have the
same relationship to the treatment (R2dz.x) as each benchmark, but explains all the residual
variance of the outcome (R2yz.dx=1).

5.1 Violence in Darfur

In this section, we briefly demonstrate how to replicate the analysis of Section 3, using the
dataset darfur.dta included with sensemakr for Stata.

Users can investigate the sensitivity of the directlyharmed treatment estimate, as well
as bounds using the benchmark covariate female, via the following call:

use darfur.dta, clear

sensemakr peacefactor directlyharmed age farmer herder pastvoted hhsize ///

female i.village_, treat(directlyharmed) benchmark(female)

Grouped benchmarks can be assessed using the gbenchmark(varlist) option. For in-
stance, the following code adds the joint benchmark female and pastvoted. Note that while
the options gbenchmark() and benchmark() can be used in tandem, only a single grouped
benchmark, consisting of all the variables specified in gbenchmark(), can be evaluated per
sensemakr call.

. sensemakr peacefactor directlyharmed age farmer herder pastvoted hhsize ///

female i.village_, treat(directlyharmed) benchmark(female) ///

gbenchmark(female pastvoted)

Users can modify the output using the following options:

• alpha(real): the significance level. The default is 0.05.

• gname(string): enables the user to specify a custom name for the grouped bench-
mark specified in gbenchmark() (if used). By default, names for grouped benchmarks
are constructed by appending variables with ‘-’.

• kd(numlist) and ky(numlist): these arguments parameterize how many times
stronger the confounder is related to the treatment (kd) and to the outcome (ky),
in comparison to the benchmark covariate. By default, kd and ky are set to (1 2 3),
so provides estimates for a hypothetical confounder that is 1, 2, and 3 times as strong
as each benchmark covariate. If only option kd(numlist) is provided, ky will be set
equal to kd by default. If the user opts to specify kd and ky, the number of elements
within each option must be equivalent.

• latex(filename): saves a condensed version of the reporting outputs in filename.tex.

• noreduce: the default functionality assumes that confunders reduce the absolute
value of the estimate. If the user wishes to assume that confounders pull the estimate
away from zero, they can specify the noreduce flag.
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• q(real): this option enables the user to specify what fraction of the effect estimate
would have to be explained away to be problematic. Defaults to 1, implying that a
reduction of 100% of the current effect estimate (true effect of 0) would be problematic.

• r2yz(numlist): Allows the user to specify alternative scenarios for the extreme
bounds table. For instance, inputting (.5 .75) would display the expected treat-
ment coefficients if a confounder explained 50% and 75% of the residual variance of
the outcome. By default r2yz is set to 1.

• suppress: eliminates verbose description of sensitivity statistics.

Should users wish to design their own custom exports, all reported estimates are acces-
sible within the e() class.

5.1.1 Sensitivity contour plots of point estimates and t-values

Sensitivity plots for point estimates and t-values can be generated by appending the options
contourplot and tcontourplot, respectively, to the sensemakr call. The contour plots
can be customized with the following display options:

• clines: the number of contour lines to display on each plot. Defaults to 7.

• clim(numlist): the symmetric axis limits for the contour plots. Max range is (0 1)

In addition, advanced users can generate their own plots by accessing the raw contour
data within e(contourgrid) or e(tcontourgrid).

5.1.2 Sensitivity plots of extreme scenarios

Plots for extreme confounding scenarios are generated using the extremeplot option. By
default these plots consider confounding that explains 100%, 75%, and 50% of variation
in the residual outcome, producing three separate curves for each scenario. The extreme
scenario plot can be customized with the following display options:

• r2yz(numlist): enables the user to specify custom values for the extreme plot. Users
can specify a maximum of four custom values.

• elim(numlist): adjusts the x-axis limits of the plot. Max range is (0 1). Note that
limits for the y-axis are set automatically to include the critical value.

5.2 Differences between R and Stata implementations

The Stata package produces analogous outputs to the R implementation. There are two
main differences between the packages. First, the additional functions described in section
4 are implemented in Mata, and are thus inaccessible from the command line in the Stata

package. Users who wish to access these helper functions should favor the R implementation.
Second, the plots produced by the R package can be more easily customized than those
produced by the Stata package. However, if advanced users wish to customize the contour
plots produced by the Stata package, they can reconstruct them using the raw data provided
in the e() class output: e(contourgrid) and e(tcontourgrid) for the coefficient and t-contour
plots, respectively.
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6. Discussion

We recognize that the tools we present here have the potential to be misused, and that it
may be tempting to use sensitivity analyses as “robustness tests” that should be “passed,” in
way similar to the current abuse we observe, for instance, with statistical significance testing
(Ziliak and McCloskey, 2008; Cinelli, 2012; Benjamin et al., 2018; Amrhein and Greenland,
2018). We thus conclude this tutorial with brief remarks regarding the appropriate use
of sensitivity analysis in general and as applied to the tools provided by sensemakr in
particular.

What sensitivity analyses can and cannot tell us

The quantities and graphics computed by sensemakr tell us what we need to be prepared to
believe in order to sustain that a given conclusion is not due to confounding. For instance,
in the applied example discussed here, sensemakr reveals that, even in a worst case scenario
where the unobserved confounder explains all the residual variation of the outcome, this
unobserved confounder would need to be more than twice as strongly associated with the
treatment as the covariate female to fully explain away the observed estimated effect of
directlyharmed. This is a true quantitative statement that describes the strength of
confounding needed to overturn the research conclusions.

Note, however, that sensitivity analyses cannot tell us whether such confounder is likely
to exist. The role of sensitivity analysis is, therefore, to discipline the discussion regarding
the causal interpretation of the effect estimate. Ultimately, this discussion needs to rely
on domain knowledge, and is beyond the realm of statistics alone. To illustrate using our
example:

1. A causal interpretation of the research conclusion may be defended by claiming that,
given the way injuries (the “treatment”) occurred, the scope for targeting particular
types of individuals was quite limited; aircraft dropped makeshift and unguided bombs
and other objects over villages, and militia raided without concern for who they would
attack—the only known major exception to this, due to sexual assaults, was targeting
gender, which is also one of the most visually apparent characteristics of an individual.
Thus, a confounder twice as strong as female would be indeed surprising.

2. Similarly, for the causal conclusion to be persuasively dismissed, it does not suffice to
argue that some confounding might exist. Helpful skepticism must articulate why a
confounder that explains more than twice of the variation of the treatment assignment
than the covariate female is plausible. Otherwise, the putative confounder cannot
logically account for all the observed association, even if it explains all or some large
portion of the residual outcome variation.

Robustness to confounding is thus claimed to the extent one agrees with the arguments
articulated in point 1, while the results can be deemed fragile insofar as alternative stories
meeting the requirements in point 2 can be offered. Both types of arguments need to rely
on domain knowledge as to how the attacks occurred and what could presumably influence
the outcome variable.
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In sum, sensitivity analyses should not be used to obviate discussions about confounding
by engaging in automatic procedures; rather, they should be used to stimulate a disciplined,
quantitative argument about confounding, in which such statements are made and debated.
The tools provided by sensemakr allow users to easily and transparently report the sensi-
tivity of their causal inferences to unobserved confounding, thereby enabling this disciplined
discussion as to what can be concluded from imperfect observational studies.
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Appendix A. Grouped Benchmarks

Here we show that using the observed partial R2 of a group of variables along with the
formulas provided for a single variable provides conservative bounds on the strength of
unobserved confounding as strong as that group of variables.

Proposition 1 Let the observed covariates X = [X1, . . . , Xp] be orthogonal to Z, or con-
sider the part of X not linearly explained by Z. Denote by X(1...j) the group (vector) of
variables [X1, . . . , Xj ]. Denote the complement of this set by X−(1...j). Define,

kD :=
R2
D∼Z|X−(1...j)

R2
D∼X(1...j)|X−(1...j)

, kY :=
R2
Y∼Z|D,X−(1...j)

R2
Y∼X(1...j)|D,X−(1...j)

. (13)

Then,

R2
D∼Z|X = kDf

2
D∼X(1...j)|X−(1...j)

, R2
Y∼Z|D,X ≤ η

2f2Y∼X(1...j)|D,X−(1...j)
, (14)

where,

f2D∼X(1...j)|X−(1...j)
:=

R2
D∼X(1...j)|X−(1...j)

1−R2
D∼X(1...j)|X−(1...j)

,

f2Y∼X(1...j)|D,X−(1...j)
:=

R2
Y∼X(1...j)|D,X−(1...j)

1−R2
Y∼X(1...j)|D,X−(1...j)

,

η :=

√kY +
∣∣∣fKD,(1,...j) × fD∼X(1...j)|X−(1...j)

∣∣∣√
1− f2KD,(1,...j)

× f2D∼X(1...j)|X−(1...j)

 ,

and,

f2KD,(1,...j)
:=

kDR
2
D∼X(1...j)|X−(1...j)

1− kDR2
D∼X(1...j)|X−(1...j)

.
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Proof We start with the first equality in Equation 14, namely, R2
D∼Z|X = kDf

2
D∼X(1...j)|X−(1...j)

.

This result was first proved by Cinelli and Hazlett (2020), and here we present an alternative
argument that might be simpler to follow. Consider the full treatment regression,

D = δ̂ZDZ + X(1...j)θ̂(1...j) + X−(1...j)θ̂−(1...j) + ε̂D, (15)

and the restricted treatment regression,

D = X(1...j)θ̂(1...j),r + X−(1...j)θ̂−(1...j),r + ε̂D. (16)

Note R2
D∼Z|X is the partial R2 of Z in Equation 15, whereas R2

D∼X(1...j)|X−(1...j)
is the partial

R2 of X(1...j) in Equation 16. Now define the index XD,j := X(1...j)θ̂(1...j). Note that, since

X ⊥ Z, we have that XD,j = X(1...j)θ̂(1...j),r. We can rewrite the full treatment regression
as

D = δ̂ZDZ +XD,j + X−(1...j)θ̂−(1...j) + ε̂D. (17)

We can likewise re-express R2
D∼Z|X as,

R2
D∼Z|X = R2

D∼Z|XD,j ,X−(1...j)
. (18)

Applying the recursive definition of partial correlations, the absolute value ofRD∼Z|XD,j ,X−(1...j)

becomes,

∣∣∣RD∼Z|XD,j ,X−(1...j)

∣∣∣ =

∣∣∣∣∣∣RD∼Z|X−(1...j)
−RD∼XD,j |X−(1...j)

RZ∼XD,j |X−(1...j)√
1−R2

D∼XD,j |X−(1...j)

√
1−R2

Z∼XD,j |X−(1...j)

∣∣∣∣∣∣ (19)

=

∣∣∣∣∣∣ RD∼Z|X−(1...j)√
1−R2

D∼X(1...j)|X−(1...j)

∣∣∣∣∣∣ (20)

=

∣∣∣∣∣∣
√
kDRD∼X(1...j)|X−(1...j)√
1−RD∼X(1...j)|X−(1...j)

∣∣∣∣∣∣ . (21)

Here the first equality in Equation 20 stems from the orthogonality of X and Z, which
implies RZ∼XD,j |X−(1...j)

= 0 and XD,j = X(1...j)θ̂(1...j),r, and the second equality of Equa-
tion 21 is due to the definition of kD. We thus have that,

R2
D∼Z|XD,j ,X−(1...j)

= kD × f2D∼X(1...j)|X−(1...j)
, (22)

as desired.

We now prove the second inequality. While Cinelli and Hazlett (2020) had originally
proposed iteratively using the recursive definition of partial correlations, we show that one
can simply use the same formula for benchmarking against a single variable Xj to obtain
valid upper bounds when using the partial R2 of a group of variables X(1...j).
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First, we we need to re-express RZ∼XY,j |D,X−(1...j)
. Using again the recursive definition

of partial correlations we have,∣∣∣RZ∼XY,j |D,X−(1...j)

∣∣∣ =

∣∣∣∣∣∣RZ∼XY,j |X−(1...j)
−RD∼Z|X−(1...j)

RD∼XY,j |X−(1...j)√
1−R2

D∼Z|X−(1...j)

√
1−R2

D∼XY,j |X−(1...j)

∣∣∣∣∣∣ (23)

=

∣∣∣∣∣∣ RD∼Z|X−(1...j)
RD∼XY,j |X−(1...j)√

1−R2
D∼Z|X−(1...j)

√
1−R2

D∼XY,j |X−(1...j)

∣∣∣∣∣∣ (24)

≤

∣∣∣∣∣∣
√
kDRD∼X(1...j)|X−(1...j)

RD∼X(1...j)|X−(1...j)√
1− kDR2

D∼X(1...j)|X−(1...j)

√
1−R2

D∼X(1...j)|X−(1...j)

∣∣∣∣∣∣ (25)

=
∣∣∣fKD,(1,...j) × fD∼X(1...j)|X−(1...j)

∣∣∣ . (26)

The equality in Equation 24 comes from the orthogonality X ⊥ Z which implies that
RZ∼XD,j |X−(1...j)

= 0. The inequality in Equation 25 uses the definition of kD, which implies

R2
Z∼XD,j |X−(1...j)

= kDR
2
D∼X(1...j)

, and the fact that R2
D∼XY,j |X−(1...j)

≤ R2
D∼X(1...j)|X−(1...j)

.

Now going back to our target, R2
Y∼Z|D,X , it can be written in terms of XY,j and X−(1...j),

R2
Y∼Z|D,X = R2

Y∼Z|D,XY,j ,X−(1...j)
(27)

Using the recursive definition of partial correlations we can re-express R2
Y∼Z|D,XY,j ,X−(1...j)

as,

RY∼Z|D,XY,j ,X−(1...j)
=
RY∼Z|D,X−(1...j)

−RY∼XY,j |D,X−(1...j)
RZ∼XY,j |D,X−(1...j)√

1−R2
Y∼XY,j |D,X−(1...j)

√
1−R2

Z∼XY,j |D,X−(1...j)

(28)

Finally, note that: (i) R2
Y∼XY,j |D,X−(1...j)

≤ R2
Y∼X(1...j)|D,X−(1...j)

, since the linear combina-

tion XY,j is not necessarily the one that maximizes the R2 in the restricted outcome regres-
sion; (ii) by the definition of kY , we have R2

Y∼Z|D,X−(1...j)
= kYR

2
Y∼X(1...j)|D,X−(1...j)

; and,

(iii) as we showed before,
∣∣∣RZ∼XY,j |D,X−(1...j)

∣∣∣ =
∣∣∣fKD,(1,...j) × f

2
D∼X(1...j)|X−(1...j)

∣∣∣. Combin-

ing these we have,

∣∣∣RY∼Z|D,XY,j ,X−(1...j)

∣∣∣ ≤
∣∣∣RY∼Z|D,X−(1...j)

∣∣∣+
∣∣∣RY∼XY,j |D,X−(1...j)

RZ∼XY,j |D,X−(1...j)

∣∣∣√
1−R2

Y∼XY,j |D,X−(1...j)

√
1−R2

Z∼XY,j |D,X−(1...j)

≤

∣∣∣√kYRY∼X(1...j)|X−(1...j)

∣∣∣+
∣∣∣RY∼X(1...j)|D,X−(1...j)

× fKD,(1,...j) × fD∼X(1...j)|X−(1...j)

∣∣∣√
1−R2

Y∼X(1...j)|D,X−(1...j)

√
1− f2KD,(1,...j)

× f2D∼X(1...j)|X−(1...j)

=

√kY +
∣∣∣fKD,(1,...j) × fD∼X(1...j)|X−(1...j)

∣∣∣√
1− f2KD,(1,...j)

× f2D∼X(1...j)|X−(1...j)


∣∣∣RY∼X(1...j)|D,X−(1...j)

∣∣∣√
1−R2

Y∼X(1...j)|D,X−(1...j)


= η

∣∣∣fY∼X(1...j)|D,X−(1...j)

∣∣∣ . (29)

30



sensemakr: Sensitivity Analysis Tools for OLS

Therefore,

R2
Y∼Z|D,X ≤ η

2
∣∣∣f2Y∼X(1...j)|D,X−(1...j)

∣∣∣ , (30)

as we wanted to show.

Appendix B. Interaction and Bootstrap Example

In this section we illustrate both how to incorporate interaction terms and also how to
use the nonparametric bootstrap for statistical inference using sensemakr. As an example,
suppose a researcher wants to incorporate an interaction term of the covariate female with
the treatment assignment directlyharmed. Since sensemakr performs sensitivity analy-
sis of a regression coefficient, the first step is to reparameterize the model such that the
effect of interest is represented by a single regression coefficient. This can be done using
the approach suggested in Hirano and Imbens (2001), which consists of recentering the co-
variate female and including both the main term and the interaction term of female and
directlyharmed. By performing the transformation in this way, the target coefficient of
interest is still given by a single regression coefficient, the main term of directlyharmed.
Notice that, when performing this transformation, traditional standard errors would under-
estimate uncertainty, as it does not account for the centering process. This can be easily
overcome by using the nonparametric bootstrap, and performing the centering in each boot-
strap resample. This example is also useful to illustrate grouped benchmarks, as here, to
fully capture the strength of female, we now need to consider both its main effect and its
interaction effect. The code below performs this analysis, and constructs confidence inter-
vals for the bias-adjusted estimate if confounders were as strong as the observed covariate
female.

# Bootstrap

B <- 1e3; # number of bootstrap samples

n <- nrow(darfur) # number of observations in the full data

adjusted_estimate_boot <- rep(NA, B) # vector to store results

# boostrap loop

for(i in 1:B){

cat(i,"out of", B, "\n")

# resample data

idx_boot <- sample(1:n, size = n, replace = T)

dat_boot <- darfur[idx_boot, ]

# center covariate female

dat_boot$female <- dat_boot$female - mean(dat_boot$female)

# fit model with interaction term
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my.ols_boot <- lm(peacefactor ~ directlyharmed*female + age + farmer_dar +

herder_dar + pastvoted + hhsize_darfur + village,

data = dat_boot)

# sensemakr

sense.out_boot <- sensemakr(my.ols_boot, treatment = "directlyharmed",

benchmark_covariates =

list(female = c("female","directlyharmed:female")),

kd = 1)

# save the estimate

adjusted_estimate_boot[i] <- sense.out_boot$bounds[1,"adjusted_estimate"]

}

# percentile interval

sig.level <- 0.05

quantile(adjusted_estimate_boot, c(sig.level/2, 1-sig.level/2))

The 95% confidence interval using the bootstrap with an interaction term is [0.014, 0.12].
The traditional interval using classical standard errors and ignoring centering is [0.031, 0.12].

Appendix C. Cluster Bootstrap Example

We now showcase how to perform the same Darfur analysis we have performed in the main
text using sensemakr and the cluster bootstrap. We use use village as a cluster. The
bootstrap procedure is relatively simple to implement: instead of resampling cases with
replacement, we resample clusters with replacement, and keep all cases within the cluster.
The code below performs this analysis to construct confidence intervals for the bias-adjusted
estimate if confounders were as strong as the observed covariate female.

# Cluster Bootstrap

B <- 1e3; # number of bootstrap samples

n <- nrow(darfur) # number of observations in the full data

adjusted_estimate_boot <- rep(NA, B) # vector to store results

# bootstrap loop

for(i in 1:B){

cat(i,"out of", B, "\n")

# get the vector of clusters

clusters <- unique(darfur$village)

# sample clusters with replacement

sample_cluster <- sample(clusters, size = length(clusters), replace = T)

# pick observations that are in the sampled clusters

idx_boot <- darfur$village %in% sample_cluster

# bootsrap sample
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dat_boot <- darfur[idx_boot, ]

# fit model

my.ols_boot <- lm(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar +

pastvoted + hhsize_darfur + female + village,

data = dat_boot)

# sensemakr

sense.out_boot <- sensemakr(my.ols_boot, treatment = "directlyharmed",

benchmark_covariates = "female",

kd = 1)

# save the estimate

adjusted_estimate_boot[i] <- sense.out_boot$bounds[1,"adjusted_estimate"]

}

# percentile interval

sig.level <- 0.05

quantile(adjusted_estimate_boot, c(sig.level/2, 1-sig.level/2))

The 95% confidence interval using cluster bootstrap is [0.035, 0.118]. The results are very
similar to the classical 95% confidence interval of [0.032, 0.118].
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https://repositorio.unb.br/handle/10482/11230.

Jerome Cornfield, William Haenszel, E Cuyler Hammond, Abraham M Lilienfeld, Michael B
Shimkin, and Ernst L Wynder. Smoking and lung cancer: recent evidence and a discussion
of some questions. journal of National Cancer Institute, 1(23):173–203, 1959.

Vincent Dorie, Masataka Harada, Nicole Bohme Carnegie, and Jennifer Hill. A flexible,
interpretable framework for assessing sensitivity to unmeasured confounding. Statistics
in medicine, 35(20):3453–3470, 2016.

Kenneth A Frank. Impact of a confounding variable on a regression coefficient. Sociological
Methods & Research, 29(2):147–194, 2000.

Kenneth A Frank, Gary Sykes, Dorothea Anagnostopoulos, Marisa Cannata, Linda Chard,
Ann Krause, and Raven McCrory. Does nbpts certification affect the number of colleagues
a teacher helps with instructional matters? Educational Evaluation and Policy Analysis,
30(1):3–30, 2008.

Kenneth A Frank, Spiro J Maroulis, Minh Q Duong, and Benjamin M Kelcey. What would
it take to change an inference? Using Rubin’s causal model to interpret the robustness
of causal inferences. Educational Evaluation and Policy Analysis, 35(4):437–460, 2013.

34



sensemakr: Sensitivity Analysis Tools for OLS

Chad Hazlett. Angry or weary? how violence impacts attitudes toward peace among
darfurian refugees. Journal of Conflict Resolution, page 0022002719879217, 2019.

MA Hernán and JM Robins. Causal inference: What if. Boca Raton: Chapman & Hill/CRC,
2020.

Keisuke Hirano and Guido W Imbens. Estimation of causal effects using propensity score
weighting: An application to data on right heart catheterization. Health Services and
Outcomes research methodology, 2:259–278, 2001.

Guanglei Hong, Xu Qin, and Fan Yang. Weighting-based sensitivity analysis in causal
mediation studies. Journal of Educational and Behavioral Statistics, 43(1):32–56, 2018.

Carrie A Hosman, Ben B Hansen, and Paul W Holland. The sensitivity of linear regression
coefficients’ confidence limits to the omission of a confounder. The Annals of Applied
Statistics, pages 849–870, 2010.

Kosuke Imai, Luke Keele, Teppei Yamamoto, et al. Identification, inference and sensitivity
analysis for causal mediation effects. Statistical science, 25(1):51–71, 2010.

Guido W Imbens. Sensitivity to exogeneity assumptions in program evaluation. The Amer-
ican Economic Review, 93(2):126–132, 2003.

Guido W Imbens and Donald B Rubin. Causal inference in statistics, social, and biomedical
sciences. Cambridge University Press, 2015.

Joel A Middleton, Marc A Scott, Ronli Diakow, and Jennifer L Hill. Bias amplification and
bias unmasking. Political Analysis, 24(3):307–323, 2016.

Emily Oster. Unobservable selection and coefficient stability: Theory and evidence. Journal
of Business & Economic Statistics, pages 1–18, 2017.

Judea Pearl. Causality. Cambridge university press, 2009.

James M Robins. Association, causation, and marginal structural models. Synthese, 121
(1):151–179, 1999.

Paul R Rosenbaum. Observational studies. In Observational studies, pages 1–17. Springer,
2002.

Paul R Rosenbaum and Donald B Rubin. Assessing sensitivity to an unobserved binary
covariate in an observational study with binary outcome. Journal of the Royal Statistical
Society. Series B (Methodological), pages 212–218, 1983.

Tyler J. Vanderweele and Onyebuchi A. Arah. Bias formulas for sensitivity analysis of un-
measured confounding for general outcomes, treatments, and confounders. Epidemiology
(Cambridge, Mass.), 22(1):42–52, January 2011.

Steve Ziliak and Deirdre Nansen McCloskey. The cult of statistical significance: How the
standard error costs us jobs, justice, and lives. University of Michigan Press, 2008.

35


