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Challenges in Statistics:
A Dozen Challenges in Causality and Causal
Inference*

Carlos Cinelli, Avi Feller, Guido Imbens , Edward Kennedy, Sara Magliacane, Jose Zubizarreta

Abstract. Causality and causal inference have emerged as core research ar-
eas at the interface of modern statistics and domains including biomedical
sciences, social sciences, computer science, and beyond. The field’s inher-
ently interdisciplinary nature—particularly the central role of incorporating
domain knowledge—creates a rich and varied set of statistical challenges.
Much progress has been made, especially in the last three decades, but there
remain many open questions. Our goal in this discussion is to outline re-
search directions and open problems we view as particularly promising for
future work. Throughout we emphasize that advancing causal research re-
quires a wide range of contributions, from novel theory and methodological
innovations to improved software tools and closer engagement with domain
scientists and practitioners.

1. INTRODUCTION

Causal inference is an interdisciplinary field focused
on understanding cause-and-effect relationships, such as
learning the effects of interventions, uncovering causal
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mechanisms, and providing explanations for observed
phenomena. Today there is a vibrant research community
studying causality in a diversity of domains—spanning
biomedical sciences, the social sciences, computer sci-
ence, and more—often leveraging insights from one ap-
plication area to make advances in others. Statisticians
have played a prominent role in causal inference, dating
back to Fisher and Neyman a century ago. As methodolo-
gists actively working in this area, our goal in this paper is
to highlight both the challenges and opportunities for the
next decades of statistical research in causal inference.

We are optimistic about this future, in part because the
field is just getting started: despite statistics’ historic role
in causal inference, the broader discipline’s embrace of
causal inference as a core subject is relatively new. As re-
cently as the 1990s, there were very few scholarly articles
in statistics journals that focused explicitly on causality.
Statistics textbooks typically did not cover causal infer-
ence, beyond admonishing readers not to confuse correla-
tion and causation, and any explicit mention of causality
was typically limited to discussions of randomized exper-
iments.1 There were no graduate or undergraduate courses
devoted to causal inference,2 and few presentations at ma-

1For example, in his Nobel lecture Daniel McFadden wrote, “de-
tection of true causal structures is beyond the reach of statistics” and
recommends that “For these reasons, it is best to avoid the language of
causality” ([McFadden, 2001] p. 369), despite the fact that his work is
very much about what we would now describe as causal.

2There were courses devoted to design of experiments. As far as
we know the first course devoted entirely to causal inference in exper-
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jor statistics conferences. There was little explicit atten-
tion to causal inference in other fields where statistical
methods are used, including social and biomedical sci-
ences. This is even more remarkable because causal ef-
fects are often precisely the quantities of interest in these
fields.3

This state of affairs has changed dramatically over the
last three decades. Today many of the leading statistics
journals routinely publish causal inference research (see
Figure 1), and there are now two specialized journals de-
voted exclusively to the subject, the Journal of Causal
Inference (since 2013) and Observational Studies (since
2015). Graduate and undergraduate education in statis-
tics and substantive fields regularly includes methodolog-
ical courses devoted solely to causal inference. There is a
scholarly society, the Society for Causal Inference. There
are multiple university centers devoted to causality and
causal inference,4 and there are annual academic confer-
ences focused entirely on methods for and applications of
causal inference.5

Given this rapid progress, the question is what chal-
lenges and open questions remain. We highlight a dozen
areas below:

1. Complex Experiments and Experimental Design;
2. Interference and Complex Systems;
3. Heterogeneous Effects and Policy Learning;
4. Mediation and Causal Mechanisms;
5. Optimality and Minimaxity;
6. Sensitivity Analysis and Robustness;
7. Reliable and Scalable Causal Discovery;
8. Aggregation and Synthesis of Causal Knowledge;
9. Automation of the Causal Inference Pipeline;

10. Benchmarks, Evaluation, and Validation;
11. New Identification Strategies; and
12. Large Language Models and Causality.

For each area, we provide some background and pose out-
standing challenges. We note that the challenges outlined
here are not comprehensive, and, for example, Mitra et al.
[2022] discuss some additional ones.

imental and observational studies was a graduate course Imbens and
Rubin co-taught at Harvard in 1996.

3Interestingly there is still pushback against this. For example, Bai-
ley et al. [2024] question in general “whether the researchers are inter-
ested in estimating a causal effect at all” but they admit that “in some
fields the default answer may be a clear ‘yes’ (for example, in eco-
nomics).”

4For example, the CAUSALab at Harvard University, the Causal
Artificial Intelligence Lab at Columbia University, the Stanford Causal
Science Center at Stanford University, the Center for Causal Inference
at the University of Pennsylvania.

5For example, the American Causal Inference Conference (ACIC),
the European Causal Inference Meeting (EuroCIM), the Causal Learn-
ing and Reasoning conference (CLeaR), and the Causal Data Science
meeting.
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Fig 1: Proportion of articles with the word “causal” in the
title, abstract, or keywords, in Annals of Statistics, Annals
of Applied Statistics, Biometrics, Biometrika, Journal of
the American Statistical Association, Journal of the Royal
Statistical Society, and Statistical Science from 1970 to
2024.

What are causality and causal inference? Before turn-
ing to challenges and open questions, we need a work-
ing definition of causal inference and what separates it
from other subfields of statistics; we give a more tech-
nical introduction in Section 2. We note here that we do
not draw a sharp distinction between causality and causal
inference, with perhaps the term causal inference mak-
ing a slightly closer link to statistical methods. Broadly,
causal inference is about answering “what if”6 questions,
such as learning the effect of (possibly hypothetical) in-
terventions, uncovering causal mechanisms, or unveiling
the causes of observed effects. For instance, typical ex-
amples include estimating the effect of taking a drug on
some health outcome, understanding whether having a
college degree was the cause of someone’s earnings, or
why someone had an adverse outcome. In all cases we are
interested in comparing outcomes that we by definition
cannot observe together—what Paul Holland in a widely
quoted phrase described as “the fundamental problem of
causal inference” [Holland, 1986]. Because the focus is
on comparing (factual) outcomes that we see with (coun-
terfactual) outcomes that we do not see, the challenges
in causal inference differ conceptually from those in pre-
dictive modeling. Fundamentally, this comparison raises
questions referred to as identification [Fisher, 1961]: even
in large samples we may not be able to learn answers to
our questions from the data at hand.7 For instance, simply

6The subtitle of one leading causal inference textbook, Hernan and
Robins [2020].

7Exactly what identification means is not very well defined:
Leamer [1983], in his seminal paper “Let’s take the Con out of Econo-
metrics” writes about a prominent researcher who “... mentions the
phrase ‘identification problem,’ which, though no one knows quite
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comparing observed outcomes for units exposed to differ-
ent levels of a cause may tell us little about the causal ef-
fect due to confounding—units may differ across levels of
the cause in ways related to the outcome. Moreover, these
confounders are not always observed by the researcher,
raising severe challenges for learning about the causal ef-
fects.

Dealing with these challenges requires assumptions
that are substantive, or more precisely, causal—as op-
posed to solely statistical—in nature. Such identifying
assumptions are by their nature untestable and require
strong domain knowledge for drawing compelling, cred-
ible, causal conclusions. This makes causal inference
intrinsically interdisciplinary, with models and methods
developed by researchers in a variety of fields outside
statistics for their specific substantive discipline, includ-
ing computer science, political science, biomedical sci-
ence, economics, and law. The interdisciplinary nature
of causality and causal inference creates both challenges
and opportunities. Differences in methods and terminol-
ogy between fields can make it harder to recognize the
commonalities in questions and problems. At the same
time, insights from one discipline may have applications
in other disciplines.

Where has causal inference been successful? Arguably,
the most impactful research in causal inference has been
on the design and analysis of randomized experiments,
going back to the 1920s and 1930s. In particular, Fisher
[1937] and Neyman [1923/1990] showed the power of
randomization in inferring causal effects, initially in the
context of agricultural experiments. These ideas ulti-
mately led the Food and Drug Administration (FDA) in
the United States to insist on randomized experiments
as part of the drug approval process [Hill, 1990]. Today
randomization remains the gold standard for causal infer-
ence. It has moved from being largely confined to biomed-
ical settings to now being a staple of data analyses much
more broadly, especially online in the private sector. For
instance, large tech companies conduct hundreds of thou-
sands of experiments every year to improve their products
and services [Gupta et al., 2019].

More broadly, causal inference has had repeated suc-
cess in sharpening substantive research questions, often
by clarifying the underlying assumptions and the tar-
get quantity of interest. This has proved especially use-
ful in applying novel methods from one field in others.
A leading example is the regression discontinuity de-
sign (RDD), which was first developed by education re-
searchers [Thistlethwaite and Campbell, 1960] and which
remained a niche topic for decades [Cook, 2008]. To-
day, RDD is used widely across the social and biomedi-
cal sciences, largely driven by a common causal inference

what he means, is said with such authority that it is totally convinc-
ing.”

framework that allows researchers in otherwise disparate
domains to understand and apply the same methods. An-
other prominent example is instrumental variables meth-
ods, which originated in economics [Wright, 1928, Tin-
bergen, 1930]8, and spread throughout statistics in the
1990s [Angrist et al., 1996] and subsequently found new
applications in biomedical settings through Mendelian
randomization [Sanderson et al., 2022].

Finally, there are also many celebrated analyses that use
the tools of causal inference. An early study in epidemiol-
ogy, Snow [1856] inferred the causal mechanism for the
spread of cholera through carefully documenting the lo-
cation of cholera cases in relation to the pumps used for
obtaining drinking water, in what would now be called a
natural experiment.9 Another classic example is assessing
the causal effect of smoking on cancer, where a variety
of studies documenting different pieces of evidence ulti-
mately led to the consensus that there was indeed a causal
relationship [Cornfield et al., 1959], despite the presence
of detractors among leading statisticians, including Fisher
[Fisher, 1958].

Where has causal inference failed? There have also
been many failures of studies of causal inference. Often
researchers have extrapolated insights from a study popu-
lation to a target population that is quite different. For ex-
ample, thalidomide had been prescribed as a sleep aid, but
once it was prescribed to pregnant women it was found to
lead to birth defects [Melchert and List, 2007]. These fail-
ures of external validity can plague both experimental and
observational studies.

Another type of failure arises when researchers place
excessive confidence in the assumptions required to iden-
tify causal effects. A prevalent example is assuming that
all relevant confounders are measured without sufficient
justification or adequate sensitivity analyses. Ed Leamer
argued that “Hardly anyone takes data analyses seriously”
Leamer [1983, p. 37], emphasizing the limited credibil-
ity of much empirical work in the social sciences, espe-
cially around the question of the deterrence effect of the
death penalty on murder rates. The assumptions and mod-
els used to justify such estimates are often strong and ar-
guably implausible; nonetheless, the full extent of this is-
sue can go unnoticed.10

8Scholars debate whether the economist Philip Wright or his son,
the geneticist Sewall Wright and inventor of path analysis, wrote the
first exposition of instrumental variables. See Stock and Trebbi [2003]
for stylometric evidence suggesting it was indeed Philip Wright.

9See Angrist and Pischke [2010] for a general discussion of natural
experiments and the so-called credibility revolution in econometrics.

10This body of work is sometimes referred to as the “credibility
crisis in economics” [Angrist and Pischke, 2010], a precursor to what
Angrist and Pischke later termed the “credibility revolution.” It is also
related to the broader “replication crisis” in the social sciences, al-
though that crisis raises other issues besides causality.
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Finally, causal inference has frequently been used “for
support rather than illumination,” regulating science in-
stead of supporting it [see, for example, Recht, 2025].
One consequence is that whole groups of researchers and
modes of inquiry (e.g., qualitative methods and case stud-
ies) have often been excluded from the field, leaving the
discipline poorer and limiting the potential reach of causal
inference ideas.

Organization. The rest of the paper is organized as fol-
lows. In Section 2 we describe current perspectives on
causal inference and the state of the literature. In Section
3 we describe some of the main outstanding challenges
for causal inference. In Section 4 we provide some con-
cluding thoughts.

2. THE CURRENT STATE OF CAUSAL INFERENCE

To set the stage for the outstanding challenges and fu-
ture directions for research on causal inference we briefly
introduce the standard frameworks for causal inference,
and then describe the current state of the field. More de-
tailed discussions of these issues can be found in a quickly
increasing number of textbooks on causal inference, in-
cluding Cunningham [2018], Ding [2024], Hernan and
Robins [2020], Huntington-Klein [2021], Imbens and Ru-
bin [2015b], Morgan and Winship [2015], Pearl [2009],
Pearl and Mackenzie [2018], Rosenbaum [2002, 2020]
and Wager [2024].

2.1 Frameworks for Defining Causal Effects

One of the key achievements of modern causal infer-
ence research was the development of formal frameworks
for articulating causal questions and causal assumptions,
as well as deriving causal answers. Though their usage
may differ to reflect traditions and idiosyncrasies of vari-
ous fields, these frameworks are now broadly taught, act-
ing as a common language for scientists across disciplines
for understanding and discussing causal inference prob-
lems. Here we briefly introduce three closely related ap-
proaches, or languages, for causal inference used in the
literature, highlighting some of their common aspects.

Potential Outcomes. Dating back to the 1920s [Ney-
man, 1923/1990], the potential outcomes framework orig-
inated in studies of randomized experiments. Donald Ru-
bin subsequently generalized this framework to aid in
the design and analysis of observational studies [Rubin,
1974]; see Imbens and Rubin [2015a] for a textbook
based on this formulation.

This framework starts with the notion that each unit
has multiple potential outcomes, each corresponding to a
level of the treatment; these potential outcomes are the
key objects in this approach. With a binary treatment
Wi ∈ {0,1} and with some additional restrictions (see
below), the two potential outcomes are Yi(0) and Yi(1),
for the outcomes without and with treatment respectively.

Because the treatment can only take on one value for a
particular unit (e.g., for a specific individual at a specific
time), at best only one of these potential outcomes can be
observed, leading to Holland’s celebrated “fundamental
problem of causal inference.” The realized and possibly
observed outcome is the potential outcome corresponding
to the treatment received, Yi ≡ Yi(Wi). Causal effects are
then defined as comparisons of these potential outcomes,
e.g., Yi(1)− Yi(0). Assumptions are often formulated in
terms of an unconfoundedness or ignorability assumption,
[Rosenbaum and Rubin, 1983b]:

Wi ⊥⊥
(
Yi(1), Yi(0)

) ∣∣∣ Xi.(1)

These assumptions entail conditional independence re-
strictions on the relationship between the level of the
treatment and the potential outcomes, given some set of
observed covariates or pretreatment variables Xi. For ex-
ample, in a randomized experiment, the treatment would
be guaranteed to be independent of potential outcomes
by design, and thus the treatment assignment is ignorable
or unconfounded. Other assumptions commonly used in
the potential outcome framework include ruling out par-
ticular causal effects, so-called exclusion restrictions, or
shape restrictions such as monotonicity. For example, in
an instrumental variables setting [Imbens and Angrist,
1994, Angrist et al., 1996], one might start with poten-
tial outcomes Yi(w,z) indexed by the treatment Wi and
an instrument Zi, and make the assumption that the po-
tential outcomes do not depend on the instrument, or
Yi(w,z) = Yi(w,z

′) for all z, z′. In addition, in the in-
strumental variables setting one postulates potential out-
comes for the treatment, Wi(z), for z = 0,1, with the
monotonicity assumption that Wi(1)≥Wi(0).

Structural Equation Models. Another framework for
causal inference is to model mechanisms via a sys-
tem of structural equations. This approach originated in
the econometrics literature [Haavelmo, 1943, Strotz and
Wold, 1960], with further development in the social sci-
ences [Bollen, 1989, Duncan, 2014] and in computer sci-
ence [Pearl, 2009]. Unlike the potential outcomes frame-
work, this approach models the data generating process
through a series of independent and local mechanisms,
called structural equations. Interventions and causal ef-
fects in this framework are defined as the result of modifi-
cations on (parts of the) structural equations, while keep-
ing the rest of the system untouched. While models were
traditionally assumed to be linear, these can be fully non-
parametric in modern treatments. Importantly, nonpara-
metric structural equation models can be shown to be
formally equivalent to the potential outcomes framework
under some common assumptions [Pearl, 2009].

For instance, paralleling the previous example with un-
confoundedness as in Equation (1), consider the following
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nonparametric structural equation model:

Xi = fx(Uxi)

Wi = fw(Xi,Uwi)

Yi = fy(Wi,Xi,Uyi).

Here Ux, Uw and Uy stand for unobserved factors not
modeled by the analyst, independent of each other. In this
model, the potential outcome Yi(w) is defined as the solu-
tion of the system in which Wi is set experimentally to w,
i.e., Yi(w) ≡ fy(w,Xi,Uyi). The assumption that unob-
served variables are mutually independent implies the ig-
norability assumption (1). Exclusion restrictions in struc-
tural models are represented by the absence of a variable
in the structural equation of another. Shape restrictions,
such as linearity or monotonicity, can be encoded as con-
straints on the form of structural equations.

Graphical models. Graphical models or Directed Acycli-
cal Graphs (DAGs) have emerged as a third language to
encode causal assumptions, as well as to derive their log-
ical ramifications, in an intuitive manner. Originating in
the work of Sewall Wright [Wright, 1934], with addi-
tional discussions in economics, e.g., Tinbergen [1940],
Griliches and Mason [1972], their modern form is largely
due to Peter Spirtes, Clark Glymour [Glymour et al.,
1987, Spirtes et al., 2001], and Judea Pearl [Pearl, 1995,
2009]. In a causal graph, an arrow Wi → Yi denotes that
Wi may be a direct cause of Yi. Its most general formula-
tion does not impose any functional form or distributional
assumptions about this causal relationship.

Figure 2 shows a typical causal diagram for an instru-
mental variables setting. The focus here is on the causal
effect of the treatment W on the outcome Y . The com-
plication is that there is an unobserved confounder U that
affects both the treatment and the outcome, invalidating
a direct comparison of units by treatment status. The in-
strument Z , which affects the treatment but has no direct
effect on the outcome, can help in the identification of
causal effects of the treatment on the outcome. The ex-
clusion restriction is encoded by the absence of a direct
path or arrow between Z and Y (although there is an in-
direct path from Z to Y through W ); unconfoundedness
of the instrument is encoded by the absence of arrows be-
tween U and Z and no unmeasured confounders of the
instrument. Until recently, it has been difficult to graph-
ically encode the monotonicity assumption, i.e., that the
effect of the instrument Z on the treatment W is non-
negative for all units; there are now several proposals
[VanderWeele and Robins, 2010, Maiti et al., 2025], in-
cluding by annotating arrows with a ‘+’ sign. Finally, po-
tential outcomes can also be directly represented in causal
graphs; see for example, Twin Networks [Pearl, 2009],
Single World Intervention Graphs (SWIGs) [Richardson
and Robins, 2013], or Ancestral Multi-World Networks
(AMWN) [Correa and Bareinboim, 2025].

W YZ

U

+

Fig 2: Example of a causal diagram for an instrumental
variable model.

One way to connect the graphical model of Figure 2
with the previously discussed structural equations frame-
work is to read it as encoding the following system of
nonparametric structural equations,

Zi = fz(Uzi)

Wi = fw(Zi,Ui)

Yi = fy(Wi,Ui),

along with the assumption that Uz and U are indepen-
dent. Translating to potential outcomes, note this model
encodes both the exclusion restriction, i.e., Yi(w,z) ≡
fy(w,Ui) = Yi(w), as well unconfoundedness of the in-
strument, i.e., Yi(w,z),Wi(z) ⊥⊥ Zi. The monotonicity
assumption, denoted in the graph by Zi

+−→Wi, can be
interpreted as the functional constraint in the structural
equations form, fw(1, u) > fw(0, u),∀ u, or, in the po-
tential outcomes form, Wi(1)>Wi(0),∀ i.

Overall, similarly to how we can use different lan-
guages to express the same reality, these different lan-
guages for causal inference allow us to express the data
generating process in various ways, and each of them
can provide a more precise or convenient terminology
depending on the setting. Understanding the connections
between these frameworks, as well as possibly develop-
ing new frameworks and building blocks of causality will
continue to be critical for advancing the field.

2.2 The central historical role of the case of binary
treatments under unconfoundedness

Much of the causal inference literature from the 1980s
onward has focused on a relatively narrow problem: how
to estimate the average causal effect of a binary treat-
ment on a scalar outcome in a setting where assign-
ment to the treatment is ignorable; i.e., a setting with
no unobserved confounders. A key paper is Rosenbaum
and Rubin [1983b], which introduced the ignorability as-
sumption and the propensity score, the conditional prob-
ability of being exposed to the treatment given the con-
founders.11

11The Rosenbaum-Rubin paper has now, in 2025, almost 40,000
google scholar cites, accumulating currently at a still increasing rate of
3,000 per year.
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This setting has led both to a vast and successful the-
oretical literature and to a huge empirical literature. Re-
searchers have proposed a remarkably large number of
different estimation approaches, including outcome mod-
eling, inverse propensity score weighting, matching, and
doubly robust methods based on combinations of out-
come modeling and inverse propensity score weighting.
Many of these are widely used in empirical practice, al-
though very simple methods based on least squares analy-
ses continue to be the most popular. See any of the modern
textbooks for detailed discussions of these methods.

The corresponding theoretical literature has been very
successful partly because it focused on a common prob-
lem. The drawback has been that it has also remained nar-
row. A key theme in our discussion is not only in push-
ing more causal inference research beyond this setting,
but also in speeding up the practical adoption of existing
causal inference advances beyond this binary case.

There are three ways in which this focus has been nar-
row. First, most of the work focused on the case with all
confounders observed. This is unlikely the case in prac-
tice; we discuss many alternatives below. Second, most of
the work has focused on the setting with a single binary
cause. In practice, causes are often much richer, involving
multiple causes, causes taking on many values, and com-
plex systems. Third, the literature has also largely limited
itself to estimating the effects of causes: what is the effect
of a particular intervention. A different set of questions
focuses on than causes of effects [Gelman and Imbens,
2013] or questions about attribution [Yamamoto, 2012]:
why did this happen, or how much of what we see can
we attribute to different causes. In practice there is also
widespread interest in such questions.

3. CAUSAL INFERENCE: A LOOK TO THE FUTURE

In this section we discuss a dozen areas that we view
as promising for future research on causality. In each case
we lay out the general setting, and then discuss some spe-
cific challenges.

3.1 Complex Experiments and Experimental Design

3.1.1 Motivation For most of the 20th century, the
causal inference literature on experimental design cen-
tered on agricultural and biomedical settings, typically
with a modest number of fixed units (e.g., patients or plots
of land) and a small number of treatments (e.g., active
drug versus placebo); see Wu and Hamada [2011] for a
modern discussion.12 Over the past twenty years, how-
ever, the practice of experimentation has changed dra-
matically from these classical origins, driven in part by
new technologies and the rapid growth of the tech sector.

12The literature on design of (often factorial) experiments in indus-
trial settings was largely distinct.

Today, many experiments take place in online environ-
ments and are run by private organizations [Gupta et al.,
2019]—a sharp departure from, among others, clinical tri-
als that require FDA regulatory approval. Experimenta-
tion in offline environments can also be much more com-
plex, such as when to treat in mobile health interventions
[Nahum-Shani et al., 2018]. These modern experimenta-
tion settings raise new challenges and fundamental ques-
tions, and exhibit deeper connections with the parallel lit-
erature in machine learning.

3.1.2 Background.
Online and adaptive experimentation. In many mod-

ern settings units enter into the experiment sequentially,
and outcomes can be measured soon after exposure. This
combination of sequential enrollment and fast observa-
tion greatly expands the design space, especially by en-
abling researchers to adapt the design during the exper-
iment. While these ideas have a long history in statistics
[Efron, 1971] and in the bandit literature [Lai et al., 1985],
in recent years there has been a large and very active liter-
ature on multi-armed bandits and sequential experimenta-
tion [Lattimore and Szepesvári, 2020]. For example, one
prominent research direction is allowing the experimental
design and analysis to vary across individual-level covari-
ates, often referred to as “context” in this literature [Agar-
wal et al., 2014, Dimakopoulou et al., 2019]. Another re-
cent push has focused on estimating average treatment ef-
fects after adaptive experiments [e.g., Hahn et al., 2011,
Kato et al., 2020]. Finally, there have been multiple exten-
sions to settings with complex causal models, both with
known [Lee and Bareinboim, 2018] and unknown causal
structure [Lu et al., 2021, Bilodeau et al., 2022].

Complex experimental designs. A related challenge is
that researchers today can control many more aspects of
complex experiments. For instance, many modern exper-
iments have a large number of possibly interacting treat-
ments [Zhao and Ding, 2022], such as in conjoint exper-
iments popular in survey research [Bansak et al., 2021].
This added complexity is also more common in non-
randomized studies, in which greater care is needed to
investigate interacting treatments [Yu and Ding, 2023].
Increasingly, researchers also have control over the tim-
ing of treatment, such as in mobile health interventions
[Nahum-Shani et al., 2018, Kirgios et al., 2025] or when
learning treatment policies [Nie et al., 2021]. Finally, the
treatments themselves are becoming much more complex,
especially with the increasing use of text and images as
treatments [Egami et al., 2022]; see Section 3.12.

3.1.3 Challenges
Sequential treatments and increased adaptivity. The

adaptive experimentation literature has largely focused on
the case with a single treatment per unit. Current adap-
tive methods are largely confined to settings with few
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constraints on the adaptivity. Much more challenging are
settings with sequential treatments. The initial work in
this area has relied heavily on detailed knowledge of the
causal structure. In practice combining these questions
with more limited knowledge about the causal structure
will be important. Moreover, the adaptive nature of the ex-
periments also raises questions about appropriately adapt-
ing always valid confidence sequences that are popular
in online experimentation. Finally, there remain under-
explored links to reinforcement learning [Sutton et al.,
1998].

Platform trials. In connection with adaptive experi-
ments, platform trials have gained considerable traction in
the health sciences as a means to study new medical inter-
ventions in a timely manner. Unlike traditional trials that
focus on specific treatments, platform trials center around
particular diseases, allowing the evaluation of multiple in-
terventions as they become available. These trials oper-
ate under a master protocol and often involve multiple
sites, which helps in collecting broader samples and en-
hancing generalizability. Platform trials present interest-
ing methodological challenges including the definition of
estimands, robust estimation, and multiple comparisons
[Santacatterina et al., 2025, Qian et al., 2024].

Automation and reducing frictions. In practice many
frictions prevent researchers from implementing adaptive
experimentation. Even if only some of these barriers are
“statistical” in a traditional sense, our field is still respon-
sible for working to reduce these barriers. One promising
direction is the increased use of Large Language Mod-
els and AI agents to automate more complex designs; see
Section 3.12. This introduces many additional challenges,
including how to adapt pre-analysis plans and other best
practices beyond simple settings.

3.2 Interference and Complex Systems

3.2.1 Motivation The classical causal inference paradigm
assumes no interference between units [Cox, 1958]: a
unit’s outcome only depends on that unit’s own treatment.
This is typically formalized via the unfortunately-named
Stable Unit Treatment Value Assumption [SUTVA; Ru-
bin, 1980], that is, the potential outcomes depend only
on the assignment for unit i: Yi(W) = Yi(Wi), where
W = (Wi,W−i) is the vector of treatment assignments
for all units and W−i is the corresponding vector ex-
cluding unit i. Historically, spillovers and other viola-
tions of the no-interference assumption were regarded as
nuisances and were relatively rare. In agricultural exper-
iments, plots of land do not interact with each other, at
least after introducing sufficient space to avoid spillovers
between adjacent plots; and in most classical medical set-
tings, interventions applied to one patient do not affect
other patients. Interference is a major concern in vaccine
trials for infectious diseases: epidemiological concepts

like herd immunity inherently violate the no-interference
assumption. In such settings, interference need not be a
nuisance but may be itself the quantity of interest.

In social science settings, however, spillovers and in-
terference are often the rule, rather than the exception,
putting the social into social sciences, and they are of-
ten the primary objects of interest. For example, tutoring
some students in a class may affect their classmates not
enrolled in the program. Providing information about new
technologies to some farmers may lead them to share the
information with other farmers not directly exposed to the
new information. Changing the information about some
rental properties in an online property rental environment
may shift demand from control to treated properties, af-
fecting the market equilibrium and so indirectly changing
the experience for control properties.

3.2.2 Background Causal inference under interference
is typically impossible to solve without additional struc-
ture: in a single experiment we observe only outcomes
for a single vector of treatment assignments. Fortunately,
there has been substantial progress on the vast area of re-
stricted interference that lies between the extremes of no
interference and arbitrarily complex interference, build-
ing off pioneering work from Sobel [2006], Hudgens
and Halloran [2008] and Manski [2013]. One increas-
ingly common technical tool is to define exposure map-
pings [Aronow and Samii, 2013, Manski, 2013], low-
dimensional summaries of the full treatment assignment
vector W and unit characteristics that capture how each
unit is affected by the treatment status of other units.
These summaries are then tailored to specific problems.13

For instance, in a social network setting, interference
could be well described by the average characteristics of
an individual’s friends [Ogburn et al., 2024]. In a market-
place, interference might be characterized by a summary
measure like price [Munro et al., 2021]. In an education
setting, spillovers can be summarized via the fraction of
treated units in a peer group [Manski, 1993b, Carrell et al.,
2013]. Finding effective structures for interactions and
spillovers—and incorporating those structures or frame-
works into other aspects of causal inference, such as ex-
perimental design—is an active area of research. Impor-
tantly, these questions typically involve delicate subject
matter knowledge and are inherently interdisciplinary.

Example: Bipartite Graph. Consider the bipartite graph
setting with two populations of units as illustrated in Fig-
ure 3; one prominent example is Papadogeorgou et al.
[2019], which considers the impact of reducing power

13A complementary research thread instead asks what estimation is
possible under potentially arbitrary interference or spillovers, viewing
interference as a nuisance rather than a quantity of interest; see, for
example, Sävje et al. [2021] and Leung [2022].
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a b c

1 2 3 4 5 6 7 8

Fig 3: General bipartite interference graph with 3 inter-
ventional units (labeled a, b, c) and 8 outcome units (la-
beled 1, 2, 3, 4, 5, 6, 7, 8).

plant emissions on ambient ozone. The researcher can in-
tervene on the first set of unit, the so-called intervention
units (e.g., power plants) by exposing them to different
levels of treatment. Outcomes, however, are observed for
a second set of units, the outcome units (e.g., sensor loca-
tions). Intervention units may affect partially overlapping
subsets of the outcome units. Designing experiments that
allow researchers to learn effectively about policies of in-
terest that have this form remains an open question [Lu
et al., 2025].

Example: Experiments in Two-sided Marketplaces.
Consider a marketplace where the researcher is interested
in estimating the average effect of providing additional in-
formation to customers purchasing services or items. For
example, Airbnb may provide videos or reviews to poten-
tial renters for some properties/providers. Marketplaces
such as Airbnb in which many customers interact with
many properties, have complex spillovers and are poorly
suited to traditional experiments. Consider a traditional
experiment that assigns some properties to the treatment
group and some to the control group. Such experiments
may lead customers to switch from control properties to
treated properties without otherwise change a customer’s
overall rental level. Thus, simply reporting a difference in
average outcomes could lead to misleading results with
regard to the overall average effect of switching all prop-
erties between control and treatment. Bajari et al. [2023],
Johari et al. [2022] instead consider a more complex ran-
domization that assigns pairs of units—pairs consisting
of one property and one customer—to treatment or con-
trol, as in the assignment matrix in Figure 4. Here some
properties are assigned to a customer experiment where—
for those properties only—all customers are randomly as-
signed to treatment or control. The remaining properties
are assigned to a property experiment where the proper-
ties are randomly assigned to treatment or control. This
randomization creates systematic variation in the fraction
of treated properties for each customer and in the fraction
of treated customers for each property, both of which en-
able direct estimation of the causal quantities of interest.

3.2.3 Challenges. Causal inference with interference
is fundamentally an Anna Karenina problem, as in the



Customer Property
Experiment Experiment

Properties→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Customers
↓
1 C C C C C C C C T C T C C T
2 C C C C C C C C T C T C C T
3 T T T T T T T T T C T C C T
4 C C C C C C C C T C T C C T
5 T T T T T T T T T C T C C T
6 T T T T T T T T T C T C C T
7 C C C C C C C C T C T C C T
8 T T T T T T T T T C T C C T
9 T T T T T T T T T C T C C T
10 C C C C C C C C T C T C C T


Fig 4: Possible randomization for customer and properties
in a marketplace, following Bajari et al. [2023].

opening line of the Tolstoy classic: “All happy families are
alike; each unhappy family is unhappy in its own way.”
Analogously, all no-interference applications are alike;
each SUTVA violation violates SUTVA in its own way.

Balancing generality and practicality. One of the great-
est challenge in this research area is to develop ap-
proaches that are general enough to apply to the many dif-
ferent types of interference applications, while also tack-
ling important practical complications with each distinct
type. Despite rapid progress in the past decade, the cur-
rently fragmented nature of the area has made it diffi-
cult for practitioners to see what is relevant for empirical
work and to incorporate the latest advances into their re-
search. For example, one divide is between interference
that only depends on other units’ treatment assignment,
which is often the focus in the statistics literature [Hud-
gens and Halloran, 2008], and interference that depends
on other units’ treatments and outcomes, which is more
common in the economics literature on peer effects [Man-
ski, 1993a, Sacerdote, 2001]. Another divide is between
research based primarily on potential outcomes rather
than the extensive causal discovery and graphical causal
model literature on interference, which primarily focuses
on identification [see, for example Sherman and Shpitser,
2018, Sherman et al., 2020]. While there has been recent
progress bridging these areas, we expect substantial gains
from further work.

Incorporating substantive theory. Another central chal-
lenge is to better incorporate substantive theory into the
analyses. For example, spillovers that affect units far away
in some metric are rare but often of great importance—
and finding such cascades has proved difficult empirically.
Incorporating microfoundation network models of cas-
cades could improve the ability to detect such spillovers.
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One issue is that the theory often requires subject mat-
ter knowledge beyond the statistical expertise required for
causal inference in settings without interference. A related
concern is the difficulty of measuring spillovers, and re-
flecting any measurement difficulties in the resulting anal-
ysis [Bhattacharya et al., 2020].

Interference in observational studies. A third set of
challenges concerns generalizing the methods that have
been developed for experimental settings to the obser-
vational ones that are much more common. Understand-
ing the experimental case with known assignment mech-
anisms is just the first step: spillovers are common in ob-
servational settings where challenges are bigger. For in-
stance, in the standard no-interference case, addressing
confounding typically involves adjusting for unit-specific
characteristics. In the setting with spillovers the charac-
teristics of other units may also matter, possibly making
standard adjustment procedures insufficient.

Time evolution. The nature of interference may change
over time. For example in Christakis and Fowler [2007],
the authors have data on network connections at multi-
ple points in time and find that the network linking in-
dividuals changes substantially. This may be in response
to treatments, or in response to outcomes, in both cases
requiring subtle adjustments to estimators for causal ef-
fects. See Gao [2024] for a discussion in the context of
randomized experiments.

Statistical power. Statistical power remains a core is-
sue with all but the largest empirical analyses of inter-
ference. A key challenge is to develop tools for applied
researchers to better assess power in practice and to think
about the appropriate notion of “replicates” under inter-
ference: intuitively, there is limited power to detect an in-
terference pattern of interest that only has a few replicates.
This question of replicates is closely related to the issue of
external validity of causal inference studies with interfer-
ence. While this is an issue in all studies, this is especially
challenging without the standard formulation of iid draws
from a common population. One interesting direction is to
use adaptive designs based on the propensity score [Hahn
et al., 2011], or, in network settings, to use graph-cutting
techniques to balance bias and variance [Taylor and Eck-
les, 2018].

3.3 Heterogeneous Effects and Policy Learning

3.3.1 Motivation Much of causal inference has fo-
cused on simple summaries of causal effects, for exam-
ple the average treatment effect, or average effect on the
treated. Such global averages, however, can mask impor-
tant heterogeneity; for example, if half of the subjects
benefit and half are harmed, the average effect can be zero
(see, e.g., Figure 5).

On its own, effect heterogeneity is critical for scien-
tific progress, as it can shed light on the mechanisms that

determine why some patients, but not others, respond to
treatment. Effect heterogeneity is also central for target-
ing treatments or setting treatment policies, also known
as policy learning. In the toy example above, if we knew
which half of patients benefited from treatment, we could
treat only them, avoiding harm to the other half. There
are even more possibilities when the treatment takes on
more than two levels, such as drug dosage, or when the
treatment can vary over time.

3.3.2 Background For a binary treatment, effect het-
erogeneity is often quantified and explored via the condi-
tional average treatment effect (CATE), defined as

E[Yi(1)− Yi(0) |Xi = x],

for covariates Xi (or possibly a subset of the available co-
variates). This estimand is a natural regression analogue
of an average causal effect and plays a fundamental role
in policy learning. Namely, in the binary treatment set-
ting, let π : X→{0,1} denote some policy for assigning
treatment based on covariates Xi, and let Yi(π(Xi)) de-
note the potential outcome for unit i under policy π(·).
The optimal treatment policy for maximizing the mean
outcome is

1

{
E[Yi(1)− Yi(0) |Xi = x]> 0

}
,

i.e., , the policy that simply thresholds the CATE at zero
and treats everyone whose CATE is positive. Note that
the maximization in the above is over all possible poli-
cies π :X→{0,1}; however it is often of interest to only
maximize over a smaller constrained class (possibly due
to budget limits or interpretability), in which case the re-
lationship to the CATE can be less clear. The field of
policy learning is very large, spanning statistics, econo-
metrics, machine learning, and more [Murphy, 2003, Hi-
rano and Porter, 2009, Athey and Wager, 2021, Dudík
et al., 2011], with connections to other large literatures
on bandit problems and reinforcement learning [Bubeck
and Cesa-Bianchi, 2012]. See Section 3.1 for related con-
nections to experiments.

The CATE is fundamentally different from—and more
difficult to estimate than—the ATE, analogous to how es-
timating a regression function is different from estimat-
ing a mean. For example, in an oracle setting where the
potential outcome differences Yi(1) − Yi(0) were actu-
ally observed, then the ATE could be estimated at para-
metric (1/

√
n) rates with just a sample average. How-

ever, estimating the CATE would require a regression of
Yi(1)−Yi(0) on covariates Xi; and classic no-free-lunch
theorems from nonparametric regression [Stone, 1980,
Györfi et al., 2006] tell us that no non-trivial rates of
convergence can be achieved without extra assumptions
about this regression function (e.g., smoothness or dis-
creteness of regressors). Differences become even more
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stark outside the oracle setting, where potential outcomes
must be estimated.

In early forays towards estimating the CATE, paramet-
ric and semiparametric models were popular, where the
CATE was assumed to follow some particular (partly)
parametric form (e.g., constant, or linear in a subset of
covariates) [Robinson, 1988]. More recently, methods us-
ing flexible nonparametric estimation and machine learn-
ing tools have become more popular, with a particu-
lar emphasis on double robustness [Athey and Imbens,
2016, Foster and Syrgkanis, 2023, Kennedy, 2023, Cher-
nozhukov et al., 2018, Robins et al., 2008, Athey and Wa-
ger, 2021, Semenova and Chernozhukov, 2021, Van der
Laan, 2006]. Similarly, earlier work on policy learning
typically focused on randomized experiments with known
propensity scores or parametric models where conditional
effects can be estimated at parametric 1/

√
n rates [Kita-

gawa and Tetenov, 2018, Hirano and Porter, 2009]. Re-
cent work has focused on the setting with unconfounded-
ness, allowing for flexible nonparametric models and for
incorporating black-box machine learning tools [Athey
and Wager, 2021, Luedtke and Chambaz, 2020].
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Fig 5: Example regression functions µw(x) = E[Yi |
Xi = x,Wi = w] for which (i) the average causal effect
E[µ1(Xi) − µ0(Xi)] is zero (e.g., if X ∼ Unif[−1,1]),
(ii) the individual regression functions µa are non-smooth
and difficult to estimate accurately, and (iii) the CATE
µ1(x) − µ0(x) = −0.2 × sign(x) is piecewise constant
and very simple.

3.3.3 Challenges Much of the literature on heteroge-
neous effects and policy learning has focused on expecta-
tions, mostly in smoothness models, with relatively sim-
ple data structures (e.g., single time-point binary treat-
ments). There are some exceptions of course, including
Wang et al. [2018], Leqi and Kennedy [2021], Bradic
et al. [2019], Lewis and Syrgkanis [2021], and others.
However there is much to explore outside this initial case.

Beyond expectations. Part of the focus on expectation-
based contrasts in heterogeneous effect estimation stems
from the connection to policy learning, and the fact that
such contrasts are connected to mean-optimal treatment
policies. However, these contrasts are often used in set-
tings where explicit policy learning is not the main goal;
thus there are potentially many other measures of hetero-
geneity that could be useful. These include heterogeneity
based on variances and other features of the entire dis-
tributions. Further, it can be fruitful to explore policies
that are optimal for objective functions that depend on
other aspects of the distributions beyond means, such as
inequality measures.

Beyond smoothness. Although smoothness models (where
some number of derivatives are assumed bounded) are a
standard framework from nonparametric statistics, many
different forms of structure can be considered, each with
their own nuances and advantages/disadvantages. Models
relying instead on sparsity, or bounded variation, or neu-
ral network structure are underexplored for heterogeneous
effect estimation, for example.

New data structures. Although studies with single
time-point binary treatments are conceptually simple, and
a natural starting point, real data are often much more
complex, involving continuous or multivariate treatment
options that may change over time, influenced by previous
treatments and covariates that also change over time, for
example. Further, covariates and outcomes can be high-
dimensional and non-Euclidean (e.g., graphs or images),
there can be multiple studies from different sources, and
subjects can be connected in complex networks [Og-
burn et al., 2024, Kurisu et al., 2024]. There is much to
do exploring heterogeneous effect estimation and policy
learning in these non-standard but increasingly common
data structures. Finally, a long line of work starting with
Robins [1986] has focused on estimating optimal treat-
ment regimes, that is, optimal dynamic policies; this is a
much more challenging setting.

Inference. In nonparametric regression, there are fun-
damental challenges that come with inference (e.g., con-
structing valid confidence bands) compared to estimation.
These challenges are just as fundamental for the CATE,
and so have led to a dearth of inferential versus estimation
procedures. For example, optimizing mean squared er-
ror requires balancing squared bias and variance, but this
complicates inference, since one is left with a non-trivial
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bias that does not shrink when scaled by the standard
error; Wasserman [2006] calls this “the bias problem”.
Further, although one can construct estimators that auto-
matically adapt to unknown smoothness or other struc-
ture, there are strong negative results indicating how con-
fidence bands cannot adapt in the same way [Low, 1997,
Genovese and Wasserman, 2008]. These exact same is-
sues arise for the CATE, and can be exacerbated due to the
fact that the potential outcomes are not directly observed,
and so there is additional interplay with nuisance estima-
tion error. More work is needed to understand the role
of these inferential challenges in causal-specific problems
(e.g., what are the implications for policy implementa-
tion), and to consider how some proposed fixes work for
causal inference specifically (e.g., bias reduction via de-
biasing or undersmoothing, settling for covering simpler
CATE surrogates, or accepting weaker coverage guaran-
tees).

New optimization goals. As described above, the clas-
sic setup in policy learning is to estimate policies π(·)
that maximize the mean outcome E[Yi(π(Xi))], often un-
der assumptions of no unmeasured confounding and over-
lap, for example. However, practitioners often care about
more than mean outcomes, and also want to balance op-
timizing outcomes with, for example, implementing poli-
cies that assign treatments in fair ways, or respect con-
straints on treatment availability, or other constraints. Fur-
ther, in practice the typical identifying assumptions may
be violated, or the goal may be framed in terms of the
joint distribution of potential outcomes, in which case one
could bound the optimal policy or identify a policy with
minimal worst-case regret. Although there have been re-
cent advances in this vein [Kallus and Zhou, 2021, Ben-
Michael et al., 2024], there may be other important alter-
native approaches to explore, e.g., in settings with distri-
bution shift, where policies may be implemented in new
populations that differ from that used in training.

Implementation, translation, and beyond. As is true in
many areas of causal inference, for heterogeneous effect
estimation and policy learning there is also a gap between
modern theory and methods, and practical implementa-
tion. More work is needed studying how to apply state-
of-the-art methodology in practice to substantive research
problems, and making statistical tools more available and
accessible.

Finally, one can construct heterogeneous treatment
effect-based versions of many if not all of the challenges
presented in this paper, to obtain other new and inter-
esting challenges. For example, heterogeneous effects in
complex experiments, with interference, combined with
sensitivity analysis, from a discovery perspective, with
automation, etc., are all interesting and valuable areas
to pursue. Compared to the versions of these problems
involving more standard summary effects, versions fo-
cusing on heterogeneous effects and policy learning may
come with substantial nuances and differences.

W M Y

Fig 6: Directed acyclic graph for the standard mediation
setup. M is a mediator variable on the path between treat-
ment W and outcome Y . The blue path represents the
direct effect of W , while the red path shows the indirect
effect of W through M .

3.4 Mediation and Causal Mechanisms

3.4.1 Motivation. Much work in causal inference has
focused on quantifying treatments’ effects on an outcome.
Even gold-standard experiments “reveal but do not ex-
plain causal relationships” [Bullock et al., 2010]. How-
ever, it is often of interest to go beyond a black-box as-
sessment of whether treatment works, and to also learn
how it works; this is the goal underlying mediation anal-
ysis.

Figure 6 shows a directed acyclic graph in a standard
mediation setting. Here the goal may be not only to un-
derstand how treatment W affects outcome Y , but also
how much W affects Y directly versus indirectly through
a mediatorM . Note the differences between Figure 2 with
a DAG for an instrumental variables setting. Although in
both cases we have a three variable setting with a causal
path from the left to the right, the estimands and assump-
tions are quite different. In the instrumental variables case
the direct link between the variable on the left (the in-
strument Z in Figure 2) and the outcome Y is absent,
and there is an unobserved confounder affecting both the
variable in the middle and the outcome. Understanding
such mediation effects can be useful for many purposes.
To make this more specific, consider Chen et al. [2019].
They study the effect of having a younger brother on a
first child’s education, surmising there may be a direct ef-
fect by taking away resources that are spent on the brother
instead, and an indirect effect that having a brother may
lead to fewer siblings overall (if there is a general desire
for male children). Understanding these effects may help
design educational interventions that affect children’s out-
comes.

Alternatively, furthering our understanding of the sci-
entific mechanism of a treatment could be important as
an end in and of itself.

3.4.2 Background. Mediation analysis has its origins
in linear structural equation models [Wright, 1921] and
was popularized by Baron and Kenny [1986] in a lin-
ear regression setting. Robins and Greenland [1992] and
Pearl [2001] later formalized mediation analysis within
an explicit, nonparametric causal inference framework.
Since then, mediation analysis and adjacent areas have
become a rich and active area of research, with important
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applications in the health and social sciences, and emerg-
ing areas such as algorithmic fairness and policy evalua-
tion. See VanderWeele [2015] for more of an overview.

Notation and common estimands. One of the earliest
and most widely used estimands in mediation analysis is
the controlled direct effect (CDE). Let Yi(w,m) denote
the potential outcome that would be observed if both the
treatment were set to Wi = w and the mediator to Mi =
m. The CDE of changing the treatment from w′ to w,
while holding the mediator fixed at m, is given by:

CDEm(w,w′) := E [Yi(w,m)− Yi(w
′,m)] .

This estimand captures the idealized setting of controlled
experimentation, in which the scientist isolates the direct
effect of the treatment by manipulating it while holding
potentially mediating variables constant.

While conceptually straightforward, controlled effects
can present limitations in answering mediation questions.
Importantly, CDEs fail to capture a core objective of me-
diation analysis, which is indirect effects, i.e., the effect
of the treatment on the outcome that occurs only because
the treatment influences the mediator. One can consider
controlled effects of the mediator changing from m′ to
m, while holding the treatment fixed at w, i.e.,

E [Yi(w,m)− Yi(w,m
′)] ,

but this can be non-zero even when the treatment does not
affect the mediator, and so is not a proper indirect effect.

These considerations lead to the ideas of natural di-
rect and indirect effects. Defining these objects require not
only considering counterfactual mediators under different
treatments, Mi(w), but also nested counterfactuals, such
as Yi(w,Mi(w

′))—that is, the potential outcome had the
treatment been set to w, while letting the mediator take its
natural value had the treatment been set to w′. Then, the
natural direct effect of changing the treatment from w′ to
w, while letting the mediator take its natural level under
w is defined as

NDEw(w,w′) := E[Yi(w,Mi(w))− Yi(w
′,Mi(w))].

Similarly, the natural indirect effect of holding the treat-
ment fixed at w′, while allowing the mediator to vary as
if we had changed the treatment from w′ to w, is

NIEw′(w,w′) := E[Yi(w′,Mi(w))− Yi(w
′,Mi(w

′))].

Importantly, now the average treatment effect can be de-
composed into a sum of the natural direct and indirect
effects,

E[Yi(w)− Yi(w
′)] = E[Yi(w,Mi(w))− Yi(w

′,Mi(w
′))]

= E[Yi(w,Mi(w))− Yi(w
′,Mi(w))]

+E[Yi(w′,Mi(w))− Yi(w
′,Mi(w

′))]

=NDEw(w,w
′) +NIEw′(w,w′).

Other decompositions of the ATE are possible, account-
ing for interactions between the treatment and the media-
tor [e.g., VanderWeele, 2014].

Controlled and natural effects can both be useful in
characterizing mediation, depending on the setting. Con-
trolled effects can be viewed as representing direct manip-
ulation, while natural effects can be more representative
of underlying causal mechanisms [Pearl, 2001].

There are also randomized interventional versions of
natural effects [Robins, 2003, Didelez et al., 2006, van der
Laan and Petersen, 2008], where the mediator is not set to
its actual values Mi(w) or Mi(w

′), but instead to random
draws from the corresponding conditional distributions,
e.g., to some Gi(w)∼ dP (Mi(w) |Xi).

Identification & estimation. Since controlled effects are
solely effects of a joint exposure (W,M), their identifica-
tion follows as in other causal settings, e.g., via no un-
measured confounding in the form (W,M)⊥⊥ Y (w,m) |
X , along with consistency and positivity. For natural
effects, identification is somewhat more involved. The
terms in natural effects involving counterfactuals of the
form Yi(w,Mi(w)) = Yi(w) can be identified as usual,
since this is just an effect of setting W . However, both
natural direct and indirect effects also involve counter-
factuals of the form Yi(w,Mi(w

′)), where the treatment
is set to some w but the mediator is set to its coun-
terfactual under a different treatment w′. The quantity
E[Yi(w,Mi(w

′)) |X] can be identified as∫
E[Y |X,W =w,M =m] dP (m |X,W =w′)

under the same consistency, positivity, and no unmea-
sured confounding assumptions used for direct effects,
together with two additional assumptions. The first is no
unmeasured confounding for the effect of treatment on
mediator, W ⊥⊥M(w′) |X , which is analogous to stan-
dard assumptions. The second is known as cross-world
exchangeability,M(w′)⊥⊥ Y (w,m) |X , which is a qual-
itatively different assumption since it concerns counter-
factuals under different treatmentsw andw′. In particular,
cross-world exchangeability cannot be enforced experi-
mentally by randomization and cannot be falsified [Miles,
2023], although the randomized interventional versions of
these effects can be identified without cross-world condi-
tions.

After identification, estimation can proceed much as in
other causal problems, for example via outcome model-
ing, inverse propensity score weighting, matching, semi-
parametric doubly robust methods, etc. Semiparametric
theory was developed by Tchetgen Tchetgen and Shpitser
[2012], who showed corresponding estimators are “triply
robust”. Although this sounds more favorable than “dou-
bly robust”, it is actually less so—in mediation there are
three nuisances instead of two (usual treatment and out-
comes distributions, as well as the mediator distribution),
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and two of the three nuisances need to be estimated con-
sistently (rather than one of two in the doubly robust
case).

3.4.3 Challenges
Designing experiments for mediation analysis. While

most mediation analysis are based on observational stud-
ies, experimental designs can provide stronger causal
evidence of the underlying mechanisms. An interesting
methodological challenge is the design of experiments
that can uncover mediation effects. One promising ap-
proach is sequential randomization. For instance, partic-
ipants might first be randomized to a smoking cessation
program, after which their motivation is measured, and
subsequently they can be randomized again to receive
a motivational enhancement. This sequential assignment
can help distinguish effects on the mediator from those
on the outcome. Beyond sequential randomization, facto-
rial designs allow simultaneous manipulation of both the
treatment and the mediator, provided direct manipulation
of the mediator is feasible. Encouragement designs can
be employed when the mediator cannot be directly ma-
nipulated, by randomizing an encouragement or incentive
intended to shift the mediator. These experimental strate-
gies can be developed depending on the context, enabling
stronger causal claims about mediation pathways.

Representing complex mediators. Another exciting chal-
lenge arises when dealing with high-dimensional, un-
structured mediators, such as those present in multi-
omics, digital trace, or text data. In these contexts, there
is often no clear mechanistic theory that specifies the
mediators in advance; instead, the mediators must be
learned, summarized, and interpreted directly from the
data at hand. This raises interesting questions, including
how to define appropriate causal estimands and articu-
late meaningful identification assumptions. Addressing
this gap also presents opportunities to leverage advances
in representation learning and related areas [Schölkopf
et al., 2021] to detect and characterize mediators in a data-
driven manner. The overarching goal is to develop causal
models that can succinctly capture the effects of such me-
diators, enabling inference and interpretability in settings
where there are many candidate mediating pathways both
diffuse and overlapping in nature.

Decomposing causal pathways. Another relevant di-
rection is the decomposition of causal effects, moving be-
yond traditional direct and indirect effects to assess, for
example, disparities in health care access driven by gen-
der or race [e.g., Jackson, 2021]. This line of research
is closely connected to issues of fairness and opportunity.
However, these questions are particularly challenging, as
causal effects and social constructs like race are deeply
intertwined and often difficult to disentangle, even at a
conceptual level. Nevertheless, this area is crucial for both
policy and fairness considerations, making it essential to

develop clear frameworks and language to rigorously dis-
cuss these complexities [Howe et al., 2022].

Studying time-varying mediation. From a dynamic
viewpoint, it is important to understand how direct and
indirect effects evolve over time [VanderWeele and Tch-
etgen Tchetgen, 2017]. A compelling emerging appli-
cation is in digital health interventions, where app us-
age influences behavior change, which, in turn, affects
health outcomes. Among others, these settings are chal-
lenging because of complex direct and indirect effects
through multiple time points. Current methodological
approaches include G-methods and Marginal Structural
Models (MSMs) [e.g., Aalen et al., 2020, Mittinty and
Vansteelandt, 2020, Díaz et al., 2023]. Theoretical chal-
lenges involve defining estimands that are both meaning-
ful and based on realistic assumptions, as well as de-
composing effects through multiple mediator pathways.
Practical challenges include sparse data across numerous
causal pathways, issues of dropout and missing data, and
the need to appropriately model time trends.

Generalizing mediation effect estimates. Often, just as
it is crucial to understand the effects of an intervention in
a target population, so too is uncovering the mechanisms
underlying those effects in the population of interest. This
requires generalizing or transporting estimates of direct
and indirect (mediated) effects from a study population to
a target population that may differ in covariate distribu-
tions, effect modifiers, and potentially in mediators them-
selves. Key challenges in this context include unmeasured
confounding, the need for robust estimation approaches,
and reliance on strong assumptions involving cross-world
counterfactuals.

Conducting mediation analysis in practice. In a guide
for applied researchers, Schuler et al. [2024] provide a
thoughtful discussion of practical challenges encountered
in mediation analysis. Among these, they highlight the
importance of selecting mediation effects that accurately
reflect the scientific question of interest, assessing the va-
lidity of the underlying assumptions of no unmeasured
confounding, and addressing measurement error in the
mediator. They also underscore the importance of com-
prehensive and transparent reporting of the results of me-
diation analyses. Addressing these challenges can greatly
foster mediation analysis in practice.

3.5 Optimality and Minimaxity

3.5.1 Motivation Distinct issues arise in causal effect
estimation, subsequent to identification. In particular, re-
searchers often want to use flexible methods that do not
rely on strong modeling assumptions. This raises impor-
tant questions, such as: What kind of statistical structure
are we willing to assume? How do we build estimators
that work well under these assumptions? What is the best
possible performance we could hope to achieve under our
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assumed structure? The minimax framework is a natural
and powerful one for considering these kinds of questions,
with a long history in statistics going back half a century
[Le Cam, 1973, 1986, Stone, 1980, Tsybakov, 2008].

Although minimax optimality is well understood in
some settings, such as regression and density estimation,
relatively little is known when it comes to causal infer-
ence problems. There is a pressing need to address this
gap: it means that in causal inference we often do not
know whether we could be making better, more efficient
use of the data, whether there are better estimators out
there waiting to be discovered, or if what we have is the
best we could ever get. This can lead to a proliferation
of different new methods, with little clarity about how to
compare or benchmark them. And this lack of clarity is
uniquely concerning in causal settings, where empirical
benchmarking can be inherently limited due to lack of a
ground truth [Holland, 1986]. In contrast, the minimax
framework provides a path forward for theoretical bench-
marking in causal inference—even if this path is rife with
technical challenges.

3.5.2 Background We first outline the basic setup for
minimax estimation; a very useful review can be found
in Tsybakov [2008]. We start out with some desired sta-
tistical target, denoted ψ. This could be a function, like
a conditional expectation E[Y |X = x], or a real-valued
parameter (i.e., functional), like the causally motivated
quantity

∫
E[Yi | Xi = x,Wi = 1 dP (x), which equals

E[Yi(1)] under no unmeasured confounding assumptions.
Next, we decide what we want to assume statistically,
which amounts to settling on a model P ∈ P , i.e., a set
of distributions we assume contains the truth. Common
examples include parametric models, where distributions
only differ up to finitely many parameters, or nonparamet-
ric models, where distributional components are infinite-
dimensional and only assumed to have some smoothness,
sparsity, bounded variation, etc.

Given an assumed model P , the minimax rate for esti-
mating the statistical target ψ = ψ(P ) with loss ℓ is given
by

Rn = inf
ψ̂

sup
P∈P

EP
{
ℓ
(
ψ̂,ψ(P )

)}
where the infimum is over all possible estimators, i.e., all
possible functions of the data. In words, this is the best
possible (worst-case) estimation error, across all possi-
ble estimators. In practice, minimax rates are typically
characterized in two steps: first we find a lower bound,
showing that Rn ≥ Crn for some constant C and se-
quence rn, and second we find an upper bound, showing
that Rn ≤ C ′rn for some possibly different constant C ′.
Then we can conclude the minimax rate is rn. A lower
bound on the minimax rate is a powerful result: it says

that no estimator can have risk (i.e., expected loss) uni-
formly smaller than Crn, no matter how creatively it is
constructed, or how much computation it involves.

Minimax rates thus have crucial implications, both
practical and theoretical. First, they give a precise bench-
mark for the best possible performance of a statistical
task. If some estimator’s risk does not match a minimax
lower bound, then more work is needed—either at im-
proving the estimator (or its analysis), or improving the
bound. Alternatively, if some estimator’s risk does match
a lower bound, then it cannot be improved (at least in
terms of rates), without adding or changing assumptions.
Second, minimax rates precisely characterize the funda-
mental limits of estimation in a given problem. This al-
lows us to compare different tasks, and order them in
terms of their inherent statistical difficulty in interesting
ways.
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Fig 7: Minimax rates for three classical estimation tasks,
as a function of covariate dimension d scaled by smooth-
ness s: functional estimation (e.g., estimating the ATE in
causal inference); regression estimation (e.g., the CATE);
and density estimation with measurement error (e.g., the
counterfactual density when outcomes are measured with
error). In causal analogues of these problems the rates fur-
ther depend on the complexity of nuisance functions (e.g.,
propensity scores, outcome regressions).

In some settings, much is known about minimax rates.
For example, standard parametric models have been stud-
ied for decades and precise local rates are available
[Van der Vaart, 2000]. For smooth nonparametric mod-
els, where functions are only assumed to have s bounded
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derivatives, minimax rates for d-dimensional nonpara-
metric regression and density estimation are of the form

n−1/(2+d/s)

in terms of RMSE [Stone, 1980]; see Figure 7 for an il-
lustration. This is like the parametric rate 1/

√
n, but with

an added penalty for how large the dimension d is rel-
ative to the smoothness s. For quadratic functionals in
smooth nonparametric models, such as the expected den-
sity E{p(Xi)} =

∫
p(x)2 dx, the minimax rate has been

shown to be

max

(
1√
n
, n−1/(1+d/4s)

)
[Birgé and Massart, 1995, Laurent, 1996]; see Figure 7 for
an illustration (and note the “elbow” shape). This shows
how estimating functionals of a density can be statistically
easier than estimating the whole density itself: the rate is
parametric when s≥ d/4, and otherwise the penalty driv-
ing the rate away from parametric is weaker than for den-
sity estimation, depending on d/4s instead of d/s. For
smooth density estimation with Gaussian measurement
error, the minimax rate is

(logn)−s/2

[Carroll and Hall, 1988], which is very slow, indicating
the inherent difficulty of the problem; see Figure 7 for
an illustration. Thus in this problem one either needs to
live with large estimation errors or else add more struc-
ture/assumptions.

Although minimax optimality has a relatively long his-
tory in the aforementioned settings, far less is known
when it comes to causal inference. The causal inference
setting where most is known about minimax rates is in
estimation of sufficiently smooth (e.g., pathwise differen-
tiable) target parameters, when they can be estimated at
parametric rates. In this setting, there are precise convo-
lution theorems for regular estimators, and local asymp-
totic minimax rates available [Hájek, 1972, Bickel et al.,
1993]. However, these rates are not always attainable,
e.g., if covariate dimension is too large or nuisance func-
tion smoothness is too low. Thus, over the last decade
or so, Robins and colleagues have developed extensive
results for pathwise differentiable functionals even when
parametric rates are not achievable, in smooth nonpara-
metric models [Robins et al., 2008, 2017].

3.5.3 Challenges
New parameters. Even for the most basic causal infer-

ence parameter ψ(P ) =
∫
E[Yi |Xi = x,Wi = 1] dP (x)

(and even in classical smoothness models), there are still
open and unsolved problems regarding the role of the co-
variate distribution. When one moves to other more com-
plicated parameters, many more open problems arise. For
example, stochastic intervention effects are by now of

wide interest [Kennedy, 2019, Díaz and van der Laan,
2012, Haneuse and Rotnitzky, 2013], but optimality has
not been explored outside the

√
n setting. Similarly, opti-

mality for time-varying treatment effects outside the
√
n

regime is entirely open, regardless of the model setup.
Kennedy et al. [2024] recently characterized minimax
rates for heterogeneous effect estimation in smoothness
models, but there is little work outside this regime. For
similarly complex parameters like dose-response curves
[Kennedy et al., 2017] or counterfactual densities [Kim
et al., 2018], little is known.

Adaptivity. Most available results and methods in the
context of optimality have been developed in settings
where relevant complexity parameters, such as the amount
of smoothness, are known (with few exceptions, e.g.,
Mukherjee et al. [2015]). Adaptivity is a fundamental as-
pect of nonparametric estimation [Donoho and Johnstone,
1995, Efromovich and Pinsker, 1996, Low, 1997], but it
has not been explored in detail in causal inference prob-
lems. Thus there are many fundamental open questions of
how and to what extent it is possible to adapt to unknown
smoothness, or more generally, across sets of different
function classes.

New models. The large majority of work on mini-
max optimality in causal inference considers smooth-
ness models, where nuisance functions are assumed to
have some number of bounded derivatives [Robins et al.,
2009, Kennedy et al., 2024]. (Recall functions with more
bounded derivatives are less complex, and easier to es-
timate.) Smoothness models are a natural starting point:
they are the prototypical nonparametric function class,
for which classic kernel/series methods can work well,
and which are infinite-dimensional but also structured
enough to allow for fast convergence rates, depending
on dimension/smoothness. But many other models are
also of interest (and potentially more practical), includ-
ing high-dimensional models [Bradic et al., 2019, Liu
et al., 2023, Zeng et al., 2024], bounded variation mod-
els [van der Laan, 2017], structure-agnostic models [Bal-
akrishnan et al., 2023, Jin and Syrgkanis, 2024], neural
network models [Farrell et al., 2021], and more.

Implementation. In the relatively few settings where es-
timators are available that can improve on doubly robust-
style methods (for example, using higher-order methods
[Robins et al., 2008, 2017], undersmoothing [Newey and
Robins, 2018, McGrath and Mukherjee, 2022, McClean
et al., 2024], or exploiting linearity in high-dimensions
[Athey et al., 2018, Smucler et al., 2019, Wang and Shah,
2024, Liu et al., 2023]), the estimators are often compu-
tationally intensive and require careful tuning. There are
many opportunities to make these methods more practi-
cal, automatic, and user-friendly.
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New frameworks. There are variations on the minimax
optimality framework described above, explorations of
which present new opportunities that may be particularly
important in causal inference problems. For example, in
many statistical problems it is common to use straightfor-
ward losses, e.g., squared error ℓ(ψ̂,ψP ) = (ψ̂ − ψP )

2,
or integrated L2 or supremum errors for functions. How-
ever, in causal problems it may be worthwhile to consider
new losses, e.g., that connect to the threat of unmeasured
confounding, or are derived directly from feedback from
policymakers in some way.

Similarly, expected loss may not always be most mean-
ingful; recent work has explored minimax quantiles or
confidence interval lengths, for example [Ma et al., 2024].
Another variant is to consider local minimax optimality,
where the supremum in Rn is not over the whole model
P , but instead over a subset near some specific distribu-
tion P , i.e., over all distributions Q such that d(Q,P )< ϵ
for some distance d [Van der Vaart, 2000, Balakrishnan
and Wasserman, 2019]. Local minimax rates are more
nuanced and can illustrate how fundamental limits can
change with a particular distributions P . Beyond these
variations, it may be worthwhile developing other new
frameworks for optimality, which depart even further
from the minimax setup.

3.6 Sensitivity Analysis and Robustness

3.6.1 Motivation. Canonical methods used for draw-
ing causal inferences from observational data almost by
definition rely on strong, often untestable assumptions
about the data generating process. For example, estimat-
ing causal effects through covariate adjustment assumes
no unobserved confounders between the treatment and
the outcome; instrumental variable methods require both
an assumption of no unmeasured confounders between
the instrument and the outcome, and an exclusion restric-
tion that rules out direct effects of the instrument on the
outcome; difference-in-differences designs assume that,
in the absence of treatment, the average outcome for the
treatment and control groups would have evolved in par-
allel over time.

While such assumptions may provide a useful bench-
mark and starting point for causal analysis, they are often
unlikely to hold exactly in real-world settings. This raises
several questions: how sensitive are causal inferences to
violations of such key assumptions? Or, how large would
deviations from such assumptions need to be to substan-
tively change the main results of a study? And how plau-
sible are such deviations in a given context? Probing the
robustness of causal claims to departures from causal as-
sumptions is an important and active area of research
known as sensitivity analysis.

3.6.2 Background. The first—and arguably most suc-
cessful—empirical application of sensitivity analysis is
the seminal study by Cornfield et al. [1959], which
assessed the causal nature of the association between
cigarette smoking and lung cancer. In the 1950s, several
observational studies found that smokers were substan-
tially more likely than non-smokers to develop lung can-
cer [e.g., Doll and Hill, 1950]. At the time, however, Sir
Ronald Fisher and other prominent statisticians argued
that, in the absence of experimental evidence, unobserved
confoudners, such as an individual’s genotype, could pro-
vide an alternative explanation for the observed associa-
tion [Fisher, 1957, 1958].

The now-classic sensitivity analysis by Cornfield et al.
[1959] demonstrated that, even if such an unobserved
confounder existed, this hypothetical “smoking gene”
would need to be at least nine times more prevalent in
smokers than in non-smokers to fully account for the ob-
served association—something deemed scientifically im-
plausible by most experts then and now. Absent such a
strong relation, they concluded that a causal link between
cigarette smoking and lung cancer is still necessary to ex-
plain the observed association, even allowing for plau-
sible amounts of unmeasured confounding. Building on
Cornfield’s seminal work, an extensive body of litera-
ture has developed quantitative frameworks for sensitiv-
ity analysis. Here we present a non-exhaustive sample of
methods developed to perform sensitivity analysis to un-
observed confounders.

A common thread of many approaches is to assume that
unconfoundedness holds, but only after adjusting both for
observed covariates Xi as well as for an unobserved co-
variate Ui, that is,

Wi ⊥⊥
(
Yi(1), Yi(0)

) ∣∣∣ Xi,Ui.

Given this augmented unconfoundedness assumption, re-
searchers then impose limits on the association between
the unobserved confounder and the treatment, or on the
association between the unobserved confounder and the
outcome, or on both. Alternatively, researchers can also
compute the minimal strength of association of Ui such
that it would invalidate the main conclusions of the origi-
nal study.

One of the earliest works in this area is given by Rosen-
baum and Rubin [1983a], who posited a parametric model
for the relationship between potential outcomes and both
observed and unobserved confounders, along with a para-
metric model for the propensity score as a function of
these (observed and unobserved) confounders. Given spe-
cific values for the parameters attached to Ui govern-
ing these relationships, they then examined how vari-
ations in these parameters affect the estimated average
treatment effect. Imbens [2003] and Cinelli and Hazlett
[2020] extended this approach by linking the range of
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values for the sensitivity parameters to estimable asso-
ciations given observed confounders. Other related ap-
proaches can be found in Vanderweele and Arah [2011],
Dorie et al. [2016], Altonji et al. [2005], and Veitch and
Zaveri [2020].

For binary treatments, a common approach is to limit
solely the strength of confounding by placing bounds on
the odds ratio of the treatment assignment distribution,
conditioning and not conditioning on potential outcomes.
This model has been extensively developed by Rosen-
baum [1987, 2009] and more recently by Tan [2006],
Yadlowsky et al. [2018], Kallus and Zhou [2018], Zhao
et al. [2019b], Jesson et al. [2021], Dorn and Guo [2023],
Dorn et al. [2024]. Alternative approaches for binary
treatments include Masten and Poirier [2018], who place
bounds on the difference between these distributions, and
Bonvini and Kennedy [2022], who limits the fraction of
units for which treatment assignment deviates from being
as good as random after conditioning on observed con-
founders. Closely related to the original result of Corn-
field et al. [1959], Ding and VanderWeele [2016] derive
general bounds for the causal risk-ratio, with sensitivity
parameters also expressed in terms of risk-ratios relating
the confounders with the treatment and the outcome.

Other approaches for sensitivity analysis directly spec-
ify a “tilting” or “bias” function that relates the condi-
tional distribution of the outcome under treatment (or
control) between treated and control units, or posits the
magnitude of the difference of mean (or other contrasts
of) potential outcomes. Earlier work in this area dates
back to Robins [1999], Robins et al. [2000], Brumback
et al. [2004], and Díaz and van der Laan [2013], with re-
cent work by Franks et al. [2020] and Nabi et al. [2024].
In another vein, Cinelli and Hazlett [2020, 2025] derive
omitted variable bias formulas for linear regression coef-
ficients that depend on partial R2 values describing how
much residual variation unobserved confounders explain
of the treatment and of the outcome. This omitted variable
bias approach has been generalized to fully nonparametric
settings in Chernozhukov et al. [2022a], along with dou-
bly robust estimators, for a broad class of common causal
parameters, including average treatment effects for binary
treatments and average causal derivatives for continuous
treatments.

3.6.3 Challenges. The sensitivity analysis literature
presents somewhat of a conundrum. On the one hand,
there is the canonical Cornfield et al. [1959] study, which
has been extremely successful. There is also a clear sense
that decision makers using causal analyses value infor-
mation about the robustness of these estimates that goes
beyond point estimates and standard errors. On the other
hand—and despite the impressive amount of methodolog-
ical work and the general consensus that causal analyses
should be accompanied by some analyses to assess the

sensitivity to the fundamental assumptions that support
them—such methods have not yet been widely adopted
in the empirical literature. We now discuss some practical
and theoretical open challenges of sensitivity analysis.

Robustness metrics. When traditional assumptions are
met, there seems to be a rough agreement as to which
statistics should be reported in a causal inference study:
(i) a point estimate, reflecting our “best” guess of the
target of inference; and (ii) a standard error, or confi-
dence/credible interval, reflecting a measure of statisti-
cal uncertainty surrounding the point estimate. However,
these statistics do not necessarily reveal how sensitive
conclusions are to deviations from the very assumptions
that justified them in the first place. An important line of
research is to devise statistics that can be routinely re-
ported to quickly summarize how sensitive (or robust) a
result is to systematic biases. Examples include the E-
value of Ding and VanderWeele [2016] and the robustness
value of Cinelli and Hazlett [2020]. A closely related idea
is the design of observational studies with such robustness
in mind [Rosenbaum, 2004].

Connections to domain knowledge. One of the most
challenging aspects of a sensitivity analysis is assessing
the plausibility of violations that have been shown to be
problematic. This usually requires making direct plausi-
bility judgments on the magnitude of biases. Researchers,
however, may leverage other types of domain knowledge
to bound the strength of confounding. For example, Im-
bens [2003], Oster [2019], and Cinelli and Hazlett [2020],
among others, propose comparing the relative strength of
unobserved variables with the strength of observed vari-
ables. An example is provided in Figure 8. It remains an
open challenge how to meaningfully exploit such types of
domain knowledge for sensitivity analysis.

Other types of biases. While much of the sensitivity
analysis literature has focused on biases due to unmea-
sured confounding, other types of biases may also pose
substantial threats to valid causal inferences. For exam-
ples, the problems of sample selection, attrition, missing
data, measurement error, or interference plague not only
observational studies, but also randomized experiments.
Performing sensitivity analysis to these types of biases,
and perhaps handling all of them simultaneously, is an
important open challenge.

Sharpness results. We say that a bound generated by a
sensitivity analysis is sharp when it is the tightest possible
bound given the sensitivity model and observed data. Ob-
taining sharpness results can often be difficult. For exam-
ple, only recently have we obtained sharpness results for
the sensitivity models of Tan [2006] and Ding and Van-
derWeele [2016]; see Dorn and Guo [2023] and Sjölander
[2024].
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Fig 8: Example of a sensitivity contour plot with bench-
marks [Cinelli et al., 2024]. The horizontal axis describes
the strength of association of unobserved confounders
with the treatment, while the vertical axis describes their
association with the outcome. The black triangle shows
the original treatment effect estimate, assuming no con-
founding. Contour lines show a bias-adjusted estimate,
assuming confounding with the posited strength, and a di-
rection of the bias that brings the estimate towards zero.
The red diamonds show bounds on the strength of unob-
served confounders if they were as strong as the observed
covariate “female.” In this example, the treatment effect
estimate is still robust to unobserved confounding once or
twice as strong as “female.”

Change in culture. Current publishing practices may
discourage researchers from questioning their own re-
sults. Thus, beyond technical challenges, advancing the
adoption of sensitivity analysis requires a cultural shift on
how researchers engage with imperfect assumptions and
data. Rather than a threat to publication, sensitivity analy-
sis should be seen as a tool for strengthening research, by
drawing more robust and credible inferences under imper-
fect settings.

3.7 Reliable and Scalable Causal Discovery

3.7.1 Motivation. In most of the current causal infer-
ence literature we assume that we know at least qual-
itatively the causal relations between the treatment, the
outcome and the covariates. However, in many real-world
settings we do not know how the variables of interest re-
late to each other. For example, we might not even know
which of the variables is a “treatment” and which an “out-
come.” Additionally, it might be impractical or unethical
to intervene on any individual variable. This is common

in many disciplines, such as the biological, climate, and
nutrition sciences. This challenge pertains to causal dis-
covery [Spirtes et al., 2001, Glymour et al., 2019], i.e.,
learning causal relations between the variables of interest
from data.

For example, in system biology scientists are interested
in discovering how cells communicate with each other
and how the signals they exchange get decoded in each
cell through protein signalling networks, networks of pro-
teins that interact with each other [Sachs et al., 2005]. In
this setting, we generally do not know which protein af-
fects another, and our goal is to learn the causal relations
between these variables from data, in order to be able to
predict and control how certain signals affect a cell. This
is particularly important in healthcare applications, e.g.,
in cancer research, where cancerous cells do not respond
to signals that would usually stop their growth.

Learning causal relations from data, especially obser-
vational data, is an extremely challenging task: correla-
tion and causation are not the same. So, how can we actu-
ally learn such relationships? Intuitively, if we can assume
that any causal relations between variables will make the
affected variables associated each other, we can leverage
patterns of association in the variables of interests to solve
the inverse problem and narrow down the possible causal
structures between them.

3.7.2 Background. Reichenbach’s principle of com-
mon causes [Reichenbach, 1956] provides a first example
of an assumption that relates dependence and causation.
According to this principle, if two variables X and Y are
dependent, then either X causes Y , Y causes X or there
exists another variable Z that causes both X and Y . In
this principle, saying X “causes” Y does not necessarily
mean a direct causal effect, but possibly also an indirect
causal effect. We can often additionally assume causal
faithfulness [Spirtes et al., 2001], which in this case means
that if two variables X and Y are independent, then none
of these cases can happen.

How can this principle help us identify a causal struc-
ture from observational data? We show a simple example
that can be identified using this principle. Let us assume
that we have three variables X,Y and Z , for which we
know that X and Y are independent, while the pairs X
and X and Y and Z are dependent. Following Reichen-
bach’s principle and the causal faithfulness assumption,
and assuming that there are no other variables involved,
we can leverage these dependences and independences to
identify that the only possible causal structure between
X,Y and Z is the rightmost structure in Fig. 9: because
X and Y are independent, then X and Y do not cause
each other, not even indirectly, nor are they both caused
by another variable (in this case Z).

In this simple example, there is only one causal struc-
ture that fits the dependences and independences in the
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Fig 9: V-structure example: only the rightmost causal
structure satisfies all the dependences and independences
between the variables X,Y,Z (X and Y independent, X
and Z dependent, and Y and Z dependent). The condi-
tional independence statements in red are not consistent
with the actual distribution described in the text.

distribution given our assumptions. This is not the case
in general, however. There are typically multiple causal
structures that fit a distribution; these structures constitute
a Markov Equivalence Class (MEC). If an edge between
a variable X and Y are present in all of the structures in
the MEC, we can say that the edge X→ Y is identifiable,
and X has a direct causal effect on Y .

Causal discovery [Glymour et al., 2019] provides a rich
literature that allows us to learn causal relations in many
complex settings, including under latent confounding. Ex-
tending Reichenbach’s principle, constraint-based causal
discovery methods, e.g. PC/FCI [Spirtes et al., 2001],
leverage the assumption that conditional independence
statements in the data correspond to certain patterns in
the graphical structure that by the d-separation criterion
[Pearl, 2000]. Through this correspondence, constraint-
based methods identify the MEC by performing condi-
tional independence tests on the data and using them
as constraints on potential structures. Other methods in-
stead focus on maximizing scores based on penalized
likelihoods, e.g. [Chickering, 2002, Ramsey et al., 2017],
or specific parametric assumptions [Hoyer et al., 2008,
Shimizu et al., 2006].

This is just a glimpse of causal discovery—it is an
exciting and rapidly evolving field, and there are many
interesting challenges that we will not have space to
touch upon. A particularly relevant topic is causal dis-
covery on time series, which provides more background
knowledge information, e.g., the temporal order of the
causal variables can preclude certain types of graph.
This also comes with additional challenges, e.g., subsam-
pling, time-varying confounding, and other types of non-
stationarity. We refer to Malinsky and Danks [2018], Gly-
mour et al. [2019], Vowels et al. [2022], Zanga et al.
[2022] for overviews of causal discovery.

3.7.3 Challenges Despite substantial recent progress
in causal discovery in the last 30 years, many open chal-
lenges remain. We focus on three here.

Reliability in Complex Settings. Real-world scenarios
often involve complex causal systems with many vari-
ables, some of which might not be observed (i.e., la-
tent confounding), as well as selection bias, measure-
ment noise or feedback loops. Constraint-based meth-
ods provide some partial solutions to these issues as they
can naturally model the presence of selection bias, la-
tent confounding, or cyclic causal relations [Mooij and
Claassen, 2020]. These methods can also integrate back-
ground knowledge, combine multiple datasets from dif-
ferent contexts [Mooij et al., 2020], and combine data
with different sets of overlapping variables [Triantafil-
lou and Tsamardinos, 2015b]. Additionally, unlike other
causal discovery methods, constraint-based methods shift
any parametric assumptions to the specific conditional in-
dependence tests used, which can then also be nonpara-
metric [Gretton et al., 2007].

At the same time, conditional independence testing—
which is at the heart of constraint-based methods—is a
notoriously difficult statistical problem, even for one test
at a time [Shah and Peters, 2020, Neykov et al., 2021].
Constraint-based methods compound these issues by us-
ing multiple tests on the same data, for which error depen-
dence is difficult to model even for simple structures [Cor-
nia and Mooij, 2014]. Moreover, measurement error can
introduce spurious dependence that these methods cannot
detect; there is only limited work in these settings [Zhang
et al., 2018].

An open challenge is which assumptions or models we
can use to improve the reliability of the estimation of
causal relations from data, e.g., by improving the reliabil-
ity of conditional independence tests, even in these com-
plex settings. Another direction is improving the integra-
tion of potentially unreliable background knowledge from
experts or AI systems such as Large Language Models;
see Section 3.12.

Scalability and Targeted Causal Discovery. Scalabil-
ity is a major challenge for all causal discovery meth-
ods. Most algorithms are NP-complete and their compu-
tational complexity scales exponentially with the number
of variables. In many cases, however, we are only inter-
ested in the causal effects between a few target variables
and do not need to estimate all causal relations in a sys-
tem. We then only need to identify causal relations be-
tween the target variables and their (optimal) adjustment
sets, which we can then use to estimate the causal effects.

Local causal discovery methods [e.g., Wang et al.,
2014, Gupta et al., 2023] start to address this issue for
a pair of target variables—a treatment and an outcome—
using the parents of the treatment as an adjustment set.
Other methods extend the types of adjustment sets, e.g.,
by identifying groups of nodes that have certain prop-
erties in relation to this pair of targets [Maasch et al.,
2024]. Watson and Silva [2022] propose an algorithm
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to discover causal relations between multiple target vari-
ables under the restriction that the other variables are all
non-descendants of the targets. Recently, Schubert et al.
[2025] remove this restriction by proposing an iterative
version of the classic PC algorithm that sequentially iden-
tifies the non-ancestors of the targets by increasing the
order of the conditional independence tests and removes
them from consideration. This allows us to learn a subset
of the graph that is relevant for statistically efficient ad-
justment sets, including “optimal” adjustment sets, i.e.,
sets that are optimal in terms of asymptotic variance
[Henckel et al., 2022]. On the other hand, this iterative
approach still reconstructs a MEC on the whole set of an-
cestors of the targets, which might be more than neces-
sary to identify only the optimal adjustment sets, so an
open challenge is then how to learn only the minimal part
of the causal graph that is relevant to estimate the causal
effects among a set of target variables with optimal ad-
justment sets in a computationally efficient way.

Post-selection inference in causal discovery. Another
challenge in the integration of causal discovery and es-
timation is related to data “double dipping” [Gradu et al.,
2022], i.e., reusing the same data both for discovering
the causal graph and for then estimating the causal ef-
fects, which invalidates the coverage guarantees of confi-
dence intervals. Recently, Chang et al. [2024b] proposed a
first approach to solve this issue by resampling test statis-
tics, which can also provide guarantees in case of incor-
rectly learned causal graphs. While exciting, this work
mostly focuses on constraint-based methods and on set-
tings without latent confounding. An open challenge is to
extend this framework to more general settings and dif-
ferent causal discovery approaches.

3.8 Aggregation and Synthesis of Causal Knowledge

3.8.1 Motivation A large body of causal inference re-
search in the past few decades has focused on the design
and analysis of a single study in isolation, often limited
to binary treatments. However, a comprehensive under-
standing of causal relations ultimately relies on the in-
tegration, reconciliation, and synthesis of multiple study
designs and data sources with multi-valued and multi-
dimensional treatments. A multi-faceted strategy that in-
tegrates multiple data sources and complementary study
designs is therefore often necessary for causal inference
in the real world.

3.8.2 Background Consider, for example, a random-
ized experiment and an observational study. Randomized
experiments control biases by design and therefore yield
effect estimates with high internal validity. But such stud-
ies are typically conducted on narrow samples of available
study participants, which can limit the generalizability or
external validity of their findings. Conversely, observa-
tional studies tend to encompass broader, potentially rep-
resentative samples and accumulate larger datasets with

richer covariate and temporal resolutions, yet generally
possess lower internal validity because the treatment as-
signment is not controlled by the investigator.

The causal inference literature has underscored the
importance of integrating randomized and observational
studies in enhancing the generalizability of experiments,
improving their precision for targeted parameters, and
reducing biases in observational studies [e.g., Brantner
et al., 2023, Colnet et al., 2024, Dahabreh et al., 2024].
Doing so rests on strong identification assumptions, typ-
ically ignorability and overlap conditions on the treat-
ment assignment and sample selection mechanisms; see
Hotz et al. [2005], Bareinboim and Pearl [2016] for a dis-
cussion of identification for transporting and combining
effects across different populations and settings. Under
these assumptions, estimation then proceeds via standard
methods like treatment/selection weighting, outcome re-
gression, and combinations thereof [see, e.g., Degtiar
et al., 2023]. Finally, this literature is distinct but related
to research on inference from non-probability samples in
sample surveys [e.g., Elliott and Valliant, 2017], integra-
tion of historical controls in clinical trials [e.g., Marion
and Althouse, 2023], and prediction under covariate shift
in machine learning [e.g., Tibshirani et al., 2019].

3.8.3 Challenges space
Estimating long-term effects. A common problem faced

by investigators is estimating the effect of a treatment on a
long-term outcome, when the investigators only observe
one or more short-term outcomes that are related to the
primary outcome of interest. Such short-term outcomes
are often called “surrogates” for the long-term outcome
[Prentice, 1989]. Athey et al. [2019] provide a framework
for analyzing these issues, focusing on combining (1) an
experimental study with the surrogate outcome only; and
(2) a non-randomized study or descriptive data data set
containing both the surrogate and primary outcome. This
is a relevant and recurring setting. For instance, in cancer
research, the ultimate outcome of interest is often sur-
vival, but there are surrogates that can be measured ear-
lier, such as tumor size or other indicators of disease pro-
gression. Similarly, in economics, the objective may be
to measure long-term employment or income, but these
are only available in administrative datasets. In this set-
ting, several challenges arise. For example, Athey et al.
[2019] ask how to collectivize and systematize this sci-
entific endeavor. An open challenge is building a public
library of surrogate indices for long-term outcomes that
could expedite the analysis of future interventions.

Constructing evidence factors. Drawing on Wittgen-
stein [1958, #265] regarding the critical distinction be-
tween new evidence and the same evidence repeated
twice, Rosenbaum [2010, 2021] introduces a theory of
evidence assembly in observational studies. This theory
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aims to avoid the replication of biases that may have in-
fluenced earlier studies by isolating these biases, even
though this process may expose them to new biases. The
aim is to ensure that the findings mutually reinforce each
other.

Rosenbaum does this within the context of a single
dataset, from which different study designs using vari-
ous identification strategies are leveraged. Each of these
studies produces a largely independent test for the null
hypothesis of no treatment effect, which is affected by
different forms of biases. For instance, one can simul-
taneously exploit the assumption of unconfoundedness,
an instrumental variable, and a dose-response relation-
ship. This line of research offers promising opportuni-
ties, including the integration of alternative inferential ap-
proaches such as super-population sampling, the use of
covariate adjustment techniques like weighting, and ana-
lytical tools from semiparametric efficiency theory.

Using historical controls in clinical trials. Another
promising area that relates to the integration of diverse
data sources is the use of historical controls. Randomiza-
tion is the ideal method for evaluating treatments; how-
ever, in situations where it is unethical or impractical –
such as when an effective treatment already exists, the
disease is rare, or the study population is particularly vul-
nerable – investigators may have to rely on data from pre-
vious randomized experiments. These instances involve
the use of historical controls, where previously collected
data are used to construct comparison groups for evaluat-
ing new treatments.

This approach is gaining significant traction in pharma-
ceutical settings and raises several important methodolog-
ical questions -— many of which intersect with broader
issues in data fusion. For instance, how should we ad-
dress covariate mismatch and non-compliance? How can
we assess the validity of time-homogeneity assumptions
that are typically in place? And how can we conduct effi-
cient and unbiased estimation? It is important to empha-
size that the use of historical controls constitutes a non-
experimental approach; therefore, results derived from
such analyses should not be regarded as equivalent to
those from randomized studies.

Strengthening Causal Meta-Analyses. Another major
challenge arises when we have aggregated information
from various studies and we need to synthesize it. Meta-
analysis has a long history in statistical research [e.g.,
Hedges and Olkin, 1985, 2014], but it has developed
largely independently from the field of causal inference,
even though it is fundamentally concerned with causal
questions. Notable exceptions include recent works by
Dahabreh et al. [2020] emphasizing causal identification
and semi-parametric estimation.

Nevertheless, many challenges remain, such as synthe-
sizing information from multiple experimental and non-
experimental studies, each valid under different identifi-
cation assumptions. How can we combine this evidence

when some studies provide disaggregated data while oth-
ers offer aggregated estimates? And how can we use this
information to estimate action-relevant parameters, for in-
stance, for a specific target population of patients?

Analyzing complex systems. Traditionally, causal in-
ference studies have prioritized learning a single, well-
defined causal estimand. While this approach has pro-
duced valuable insights, a pressing challenge is how to
causally describe an entire system, incorporating multi-
ple dependencies and outcomes. Consider, for example, a
model of the whole economy such as the Phillips Moniac
(Monetary National Income Analogue Computer) [Bis-
sell, 2007] or a mechanistic model of disease progres-
sion. These models encompass interacting variables and
outcomes.

Key questions in these domains concern the use of
multiple data sources and quasi-experimental estimates to
learn such models. The challenge lies in reconciling often
disparate data sources and study designs and synthesiz-
ing this information to accurately describe the entire sys-
tem. Of relevance here is VanderWeele’s [2017] empha-
sis on “outcome-wide” epidemiologic studies rather than
“exposure-wide” approaches, acknowledging that public
health recommendations should be informed by a holistic
understanding of how various factors collectively influ-
ence health outcomes. By adopting such comprehensive
approaches, we can better inform policy, ensuring that in-
terventions are grounded in a robust understanding of the
multitude of causal factors at play.

Generalizing effect estimates when (some) causal rela-
tions are unknown. While we often assume that we know
the causal relationships between the covariates, the treat-
ment, and the outcome, in some settings they need to be
learned from the data at hand. This task is called causal
discovery, as we described in Section 3.7. In the data fu-
sion setting, all the challenges related to combining causal
discovery and causal effect estimation in a statistically
efficient way mentioned in Section 3.7 are compounded
by additional challenges like multiple diverse populations
with different distributions, or by datasets with covariate
mismatch, i.e., different variables measured in different
settings.

Previous work already provides some partial answers to
this challenge. Causal data fusion [Bareinboim and Pearl,
2016] is a principled framework to combine and trans-
port causal effects across different populations. However,
this approach requires a known causal graph and the
knowledge of how distributions differ across the differ-
ent populations. Although frameworks for causal discov-
ery across multiple contexts [e.g., Mooij et al., 2020],
could be adapted to learn this knowledge from data, how
to do this effectively is still an open question. Multiple
methods have considered causal discovery in the chal-
lenging case of covariate mismatch or overlapping vari-
ables across datasets [Danks et al., 2008, Tillman and
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Spirtes, 2011, Tillman and Eberhardt, 2014, Triantafil-
lou and Tsamardinos, 2015a, Huang et al., 2020]. An-
other open question is how to combine causal discovery
and causal effect estimation across populations. Recent
work focused on observational data and experimental data
[Triantafillou et al., 2023], but how to do this effectively
across different populations and with covariate mismatch
remains an open question.

3.9 Automation of the Causal Inference Pipeline

3.9.1 Motivation. Manual derivations have long been
the primary approach for obtaining identification results
for causal effects, as well as for devising efficient esti-
mators and valid confidence intervals for the correspond-
ing target estimands. However, this approach is labor-
intensive, often slow, and error-prone, as each new set
of assumptions and target query requires a new deriva-
tion from scratch. Furthermore, this process ultimately
constrains empirical analysts to mold their investiga-
tions around well-established pre-existing results—both
in terms of assumptions and research questions—which
may not always align with their domain knowledge.

The goal of automation in causal inference is to provide
scientists with methods that can flexibly adapt to their re-
search needs. Automatic methods should handle various
research questions, no matter how unconventional; lever-
age various types of domain knowledge, however imper-
fect; and, automatically handle model diagnostics as well
as sensitivity analyses to key assumptions of the model.
Solving these tasks requires developing general purpose
tools that, given a set of causal estimands, assumptions
and data, outputs (partial) identification results, along
with finite sample estimates, confidence intervals, and sta-
tistical tests for any testable implications the model may
entail.

3.9.2 Background. Automating causal inference tasks
draws on various methods from symbolic and numeric
computation, including techniques related to graph the-
ory, matrix algebra, computer algebra, automated theorem
proving, and optimization. Here we highlight a selected
subset of these methods and applications.

One of the earliest automatic solutions to the prob-
lem of nonparametric identification originated in com-
puter science with the development of the do-calculus
and the ID algorithm, within the graphical models litera-
ture [Pearl, 1994, Tian, 2002]. The ID algorithm provides
a sound, complete and computationally efficient solution
for the problem of identifying interventional distributions
from observational data, given assumptions encoded in a
causal diagram [Huang and Valtorta, 2006, Shpitser and
Pearl, 2006].14 This method belongs to the class of sym-
bolic approaches to identification, as it not only deter-
mines whether a causal effect is point-identified but also

14Soundness ensures that when the algorithm provides an answer,
it is correct, while completeness guarantees that if the algorithm fails

produces the corresponding identification formula. Since
then, several algorithms have been developed, handling a
rich variety of complex problems, such as selection bias,
missing data, surrogate experiments, and generalizing re-
sults across experimental settings and domains (see, e.g.
Bareinboim and Pearl, 2016, Mohan and Pearl, 2021).

Other symbolic approaches to automate identification
problems leverage tools from computer algebra and au-
tomated theorem proving. For example, it can be shown
that identification in linear structural equation models
(SEMs) with Gaussian errors reduces to solving a sys-
tem of polynomial equations. A sound and complete so-
lution to this problem is available using Gröbner bases
and Buchberger’s algorithm [Garcia-Puente et al., 2010].
Similarly, in nonparametric models with discrete vari-
ables, the problems of deriving testable implications as
well as (partial) identification of causal parameters can
be solved using quantifier elimination algorithms [Geiger
and Meek, 2013]. As another example, logic-based ap-
proaches based on SAT (Boolean Satisfiability) have been
used to tackle a variety of causal inference problems, such
as causal discovery, including in complex settings with la-
tent confounding, cycles and selection bias, e.g. [Hyttinen
et al., 2014], and causal effect estimation with unknown
graphs [Hyttinen et al., 2015]. However, in all these cases,
the resulting algorithms are generally computationally in-
efficient.

Beyond symbolic methods, numeric methods have also
been used to solve identification problems in causal in-
ference. One such approach is to recast the problem of
(partial) identification as a constrained optimization prob-
lem. For instance, in causal models with discrete observed
variables, most queries, data, and assumptions can be
expressed as polynomials of the probability mass func-
tion of discrete latent variables encoding all possible re-
sponse types. The problem of (partial) identification is
then equivalent to solving a polynomial program. While
solving polynomial programs is in general NP hard, meth-
ods exist that yield anytime valid bounds [Duarte et al.,
2023].15 In contrast with the two previous examples, here
the final identification result is numeric rather than sym-
bolic. In certain special cases, however, the problem can
be simplified to a linear program, for which efficient sym-
bolic and numeric algorithms are readily available [Balke
and Pearl, 1997, Sachs et al., 2023].

Once a parameter is (partially) identified, or testable
implications are found, the next step in the causal in-
ference pipeline is to draw inferences from finite data.

to do so, the query is provably not identifiable without additional as-
sumptions or data. The ID algorithm runs in polynomial time with the
number of variables.

15That is, if the algorithm runs long enough, it converges to sharp
bounds. If it is stopped at any time, the bounds remain valid, but are
conservative.
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The automation of this task requires the development of
general-purpose tools that can accept as input potentially
arbitrary identifying estimands—be it in symbolic form,
or even defined implicitly, such as the solution to an op-
timization problem—and outputs (efficient) estimates as
well as valid uncertainty quantification for those esti-
mates. The automation of estimation and inference has
a long history in statistics; well known and widely used
examples include M-estimation (coupled with numeri-
cal differentiation, automatic differentiation or the boot-
strap) and probabilistic programming [Efron and Tibshi-
rani, 1994, Newey and McFadden, 1994, Carpenter et al.,
2017]. In some cases, such tools are already capable
of handling estimands obtained from identification algo-
rithms. In many other cases, however, they either need to
be adapted, or novel methods need to be developed.

3.9.3 Challenges Despite significant advances in the
automation of identification and estimation tasks, sev-
eral challenges remain. We now outline some of the most
pressing issues.

Equality, inequality, and shape constraints. Algorith-
mic approaches to identification have focused on lever-
aging exclusion restrictions and ignorability assumptions
(e.g., absence of arrows in a graph). However, other types
of constraints often arise in causal inference. For instance,
many popular identification strategies make use of shape
constraints such as monotonicity (e.g., no “defiers”),
equality (e.g., “parallel trends”), or continuity (e.g., con-
tinuity of potential outcomes at a cut-off point). Addition-
ally, sensitivity analyses impose (in)equality constraints
on certain parameters. Preliminary progress has been
made in incorporating monotonicity and equality con-
straints into graph-based approaches. See VanderWeele
and Robins [2010], Cinelli et al. [2019], Kumor et al.
[2020], Zhang et al. [2021], Maiti et al. [2025] for exam-
ples with applications in (partial) identification and sensi-
tivity analysis. In models with discrete variables, methods
such as those discussed in the previous section can in the-
ory handle such constraints, though in practice this has
not yet been systematically studied, and issues of compu-
tational efficiency may arise. How to systematically and
efficiently leverage shape, equality, and inequality con-
straints remains an important topic of research, with many
important applications.

Scalability. Scalability is another significant challenge
for many automated procedures. For example, while
methods from computer algebra, such as Gröbner bases,
offer a complete solution for identification in linear
systems, their complexity is doubly exponential in the
number of variables.16 Similar efficiency issues arise in

16As an illustration, it can take hours or days to solve a five variable
linear model using Gröbner bases. Note, however, that a human may
also take hours, days, if not months or years to solve the same model—
if ever.

current complete solutions for identification in discrete
systems. In many cases, it is possible to substantially
speed up the performance of these algorithms by pre-
simplifying equations or constraints. This is a pressing
challenge to make such approaches more popular in prac-
tice. Developing algorithms that, while not complete, are
efficient, also remains an important and active area of re-
search for cases where a complete and efficient solution
remains elusive or is outright known to be impossible.

Hardness results. Understanding the hardness of a task
is important because it directly informs the computational
resources required to solve it and guides algorithmic de-
velopment. For example, if a task is known to be NP-
hard, we may resort to approximation methods, heuris-
tic approaches, or search for subsets of the problem for
which an efficient algorithm may exist. Several identifica-
tion problems still have unknown hardness. For instance,
when the causal graph is known, the identification of in-
terventional queries can be solved in polynomial time in
nonparametric models; however, at the time of writing,
whether such an algorithm exists for linear models re-
mains an open question.

Knowledge representation. Automating identification
tasks requires a precise description of the query, the data
and the assumptions the researcher is willing to defend.
How to systematically and efficiently represent the re-
search question, the type of data collected, and various
types of domain knowledge remains a significant chal-
lenge. For example, causal graphical models provide a
natural and intuitive way of systematically representing
assumptions of absence of direct effects (exclusion re-
strictions) or absence of confounding (ignorability restric-
tions); they have also been extended to encode missing
data, measurement error, context specific independencies,
or discrepancies across domains. On the other hand, many
other types of domain knowledge remain under-explored,
such as notions of variable importance, or shape con-
straints. Ideally, the profession should aim for a standard
representation, in a machine-readable file, of estimands,
types of data, and assumptions, encoding all the meta-
information needed to replicate the formal aspects of a
study.

Knowledge elicitation. Even when the problem of rep-
resentation is solved, knowledge elicitation remains a
challenge. For example, most identification algorithms as-
sume that researchers start from a fixed, known, set of as-
sumptions. In reality, this is rarely the case. Researchers
may possess various types of domain knowledge, some
of which may aid in identification while much of it may
be completely inconsequential. Additionally, distinguish-
ing between useful and irrelevant knowledge can be dif-
ficult. Thus, knowledge elicitation can be viewed as a
search problem. Automatic systems should assist empiri-
cal analysts in this search by offering methods that inter-
actively help them elicit relevant knowledge reliably and
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efficiently. Having a set of sufficient conditions for identi-
fication may also help with this process, as it can provide
a useful starting point for analysis and data collection,
which can then be refined (see Sections 3.6 and 3.11).

Automatic inference with machine learning. The use of
machine learning algorithms for causal effect estimation
has gained significant attention. Constructing efficient es-
timators in these scenarios may require calculating a func-
tional derivative known as the efficient influence func-
tion. Researchers have sought to automate these calcula-
tions through numerical [Frangakis et al., 2015, Luedtke
et al., 2015, Carone et al., 2019, Jordan et al., 2022]
and automatic [Luedtke, 2024] differentiation. Even when
the analytical form of the efficient influence function is
known, these methods depend on accurately estimating
underlying nuisance parameters. To address this issue,
loss functions have been developed to automatically esti-
mate these nuisance parameters for regression functionals
[Chernozhukov et al., 2022b,c, van der Laan et al., 2025].
Several open challenges remain in this area, including de-
veloping tailored loss functions that target general statis-
tical functionals, automatically implementing estimators
based on higher-order influence functions, or broadening
the set of primitives to which automatic differentiation
can be applied.

Software. Open-source software packages implement-
ing many identification algorithms and estimation proce-
dures are a fairly recent development. See, for example
(non-exhaustive, and in alphabetical order): Ananke, au-
tobounds, DoubleML, causaleffect, causaloptim, Causal
Fusion, do-search, dagitty, EconML pcalg, tmle, among
others [Textor et al., 2011, Gruber and Van Der Laan,
2012, Kalisch et al., 2012, Tikka and Karvanen, 2018,
Karvanen et al., 2021, Syrgkanis et al., 2021, Bach et al.,
2022, Jonzon et al., 2022, Lee et al., 2023, Duarte et al.,
2023]. Notwithstanding this progress, software still re-
mains an important bottleneck for the wide-spread adop-
tion of algorithmic tools.

Artificial intelligence. While here we focused on the
perspective of statisticians and data scientists who could
benefit from using automated tools, the idea of automa-
tion of causal reasoning has its roots on the area of au-
tomated reasoning in artificial intelligence (AI). Integrat-
ing causal reasoning tools with modern AI systems, such
as large language models, is an exciting direction of re-
search that has not been fully explored, which we discuss
in Section 3.12.

3.10 Benchmarks, Evaluation, and Validation

3.10.1 Motivation A key driver of the rapid progress
in machine learning and AI has been a shared focus
on community benchmarks, such as ImageNet [Deng
et al., 2009], and the so-called common task framework
[Donoho, 2023]. In causal inference, by contrast, there

have only been a handful of widely accepted commu-
nity benchmarks. The few that exist, however, have had
a major influence on the field—perhaps too much. We ar-
gue that developing new benchmarks and data challenges
offers a promising opportunity for further advancement,
with substantial demand from the causal inference com-
munity. Looking farther ahead, we also argue that the field
needs to embrace more creative approaches for validating
causal inference tools as applied in practice.

3.10.2 Background. The primary hurdle to developing
benchmarks is Holland’s fundamental problem of causal
inference. Unlike in machine learning, where there is typ-
ically a “ground truth”—a correct image classification or
future response variable—causality researchers can rarely
have such access. This is because, with real-world data,
we can observe only one of two or more counterfactual
outcomes, making it difficult to precisely define a true
causal effect. The field has therefore focused on several
alternative approaches.

Replicating experimental benchmarks. In a hugely in-
fluential study, LaLonde [1986] sought to assess the em-
pirical performance of regression methods then com-
monly used in economics. LaLonde began with a well-
known experimental evaluation of a job training program,
where the causal effect is estimated with high precision.
He then replaced the experimental control group with in-
dividuals selected from surveys unrelated to the experi-
ment. In the end, LaLonde found that regression using
these non-experimental controls gave wildly different es-
timates than those from the original experiment itself,
casting doubt on the suitability of these methods—and di-
rectly contributing to the rise in experimental evaluations
of social policy. The primary challenge was the lack of
overlap in covariate distributions in the two samples, see
Figure 6, which displays histograms for the the log odds
ratios, log(ê/(1− ê)). See Dehejia and Wahba [1999],
Imbens and Xu [2024] for more details.

A cottage industry within causal inference has con-
ducted LaLonde-style replication exercises in settings
ranging from voter mobilization [Arceneaux et al., 2006]
to online advertising [Gordon et al., 2019]. More broadly,
there is a large and growing literature on design replica-
tion studies and within-study comparisons [Wong et al.,
2021, Chaplin et al., 2018].

Synthetic and semi-synthetic benchmarks. A common
alternative is to construct benchmarks with simulated
causal effects. Kang and Schafer [2007] is a prominent,
purely synthetic simulation benchmark that was devel-
oped to assess the performance of doubly robust meth-
ods. In another widely used benchmark, Hill [2011] con-
structed a semi-synthetic simulation, drawing the co-
variates, treatment, and control potential outcomes Yi(0)
from the Infant Home Development Program (IHDP).
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Fig 10: Assessing Overlap in Lalonde-Dehejia-Wahba
(LDW) Data
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Note: Histograms depict the log odds ratios, i.e., log(ê/(1− ê)),
using propensity score estimated through generalized random forest.
The data are the observational CPS sample and the experimental from
the National Supported Work Demonstration sample, both available
in the Lalonde-Dehejia-Wahba data in Dehejia and Wahba [1999],
Imbens and Xu [2024].

More recently, the American Causal Inference Confer-
ence (ACIC) has hosted regular competitions where teams
submit estimators with the goal of having the best pre-
dictions on a set of semi-synthetic datasets [Dorie et al.,
2019].

Data challenges and common tasks. Finally, researchers
have organized around analyzing a common dataset, seek-
ing to aggregate insights across different methods and re-
search teams—without a (synthetic) ground truth. This
has been more prominent within causal discovery for bi-
ology, such as the DREAM 5 causal discovery challenge,
with the goal of estimating protein signaling networks in
cells [Hill et al., 2016].

3.10.3 Challenges. While existing benchmarks are
widely used—each with thousands of citations—relying
too heavily on a single one of them, such as LaLonde
[1986], can distort incentives and lead the field to over-
adjust to specific attributes of the study design. This high-
lights the need for new data challenges and benchmarks
to further accelerate causality research. In the short term,
the causal inference community is actively working to-
ward improved benchmarks and simulations that reflect
the many and varied causal inference use cases [Curth
et al., 2021]. A longer-term goal is to validate the use
of causal methods more broadly. Here the question is
more fundamentally about science—e.g., explanation,
interpretation, and understanding mechanisms or causal
structure—rather than prediction. As such, this is less
amenable to ML-style benchmarks but remains critically

important, especially after high-profile failures like those
highlighted in the introduction. Among other consider-
ations, it is important to evaluate the methods not only
in terms of their final estimates, but also to the extent
to which they approximate features of a hypothetical ran-
domized experiment and the robustness of their estimates.

High-dimensional and complex data. Existing causal
inference evaluations have typically been quite low-
dimensional—most re-analyses of LaLonde [1986] only
have ten covariates, though there have been some high-
dimensional variants [Farrell, 2015]. Such evaluations
are out of step with the rapid rise of the application
of machine learning methods, such as neural networks,
to causal inference. Developing benchmarks with high-
dimensional, and complex, multi-modal data remains an
open challenge.

Designed within-study comparisons. One promising
generalization of LaLonde-style benchmarks is to explic-
itly incorporate within-study comparisons into a study
design. For instance, Shadish et al. [2008] randomly as-
signed study participants to be in a randomized or non-
randomized trial, allowing for a direct assessments of
non-experimental adjustment methods. Or Saveski et al.
[2017] randomized whole groups into two different types
of randomized designs to assess approaches for causal in-
ference under interference.

Tailored simulations. A related issue is the gap be-
tween how causal inference methods are assessed when
developed—typically in limited non-representative simu-
lation studies and stylized data illustrations—and assess-
ing the performance of that method in a specific applica-
tion. One promising but underused strategy is to essen-
tially design a simulation study tailored to specific ap-
plications, analogous to power calculations [Athey et al.,
2021]. Conducting such simulations can be prohibitive for
domain scientists and can dramatically slow practical sta-
tistical analysis. Moreover, designing simulation studies
specifically for causal inference presents a unique set of
challenges [Evans and Didelez, 2023]. Thus, automating
this process and lowering implementation barriers for do-
main scientists is an important goal [Nance et al., 2024].

Developing practical tools. More broadly—and in the
spirit of “frictionless reproducibility” in machine learn-
ing [Donoho, 2023]—the causal inference community has
only recently developed easily-modified repositories. For
instance, an important setup was the Dorie et al. [2019]
R package for accessing semisynthetic data sets from the
2016 ACIC challenge; see also Lin et al. [2019]. Further
developing these practical tools will be critical for broader
uptake.

Ground truth validation in the biological and physi-
cal sciences. Developing frameworks for validation nec-
essarily requires creative solutions—and continued en-
gagement with domain scientists. One direction is from
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biological applications, where researchers can sometimes
pair data challenges and competitions with subsequent in-
terventions to see which predictions were closest. In the
context of gene knockout experiments, researchers might
use a “training set” of interventions to predict promising
interventions in a “test set”—and then confirm those pre-
dictions with actual experimentation [see Meinshausen
et al., 2016]. In the context of physical systems, Weich-
wald et al. [2022] challenged causal researchers to deploy
methods on novel data from real-world control systems;
and Gamella et al. [2024] created computer-controlled
laboratories that can assess and validate new causal meth-
ods. Finally, Runge et al. [2019] explored causal dis-
covery methods in the context of climate data [see also
Brouillard et al., 2024].

Improved success metrics. In many application do-
mains, especially those in the medical and social sciences,
the definition of “success” is open-ended. In addition to
standard measures of statistical performance, other as-
pects, such as a strong study design and well-balanced
covariates, can be crucial to the credibility and validity
of a study; see, for example, Zhao et al. [2019a]. A close
engagement with domain scientists is critical, as their spe-
cialized knowledge can guide the design and methods to
address the most pertinent issues.

Professional hurdles to building better benchmarks.
Even if the field agrees on the scientific goals, many pro-
fessional and practical hurdles remain to building better
benchmarks. Given the limited incentives for developing
benchmarks, how can we secure funding to support their
creation and maintenance? How can teaching efforts em-
bed the development of benchmarks? And how can do-
main experts be actively involved in this effort (e.g., fol-
lowing the example of several ACIC data challenges)?

As with any approach, there will be fundamental lim-
its to such benchmarking and validation. Understand-
ing these limits will be important for making these ap-
proaches actionable in practice.

3.11 New Identification Strategies

3.11.1 Motivation. As we have discussed, going from
association to causation requires a deep understanding
of the mechanisms that generated the data. Typically,
this understanding is encoded in terms of identification
assumptions, which allow us to use observed measure-
ments within the data to identify or “see” unobservable
causal quantities that go beyond the data. In an ideal sce-
nario, these assumptions are inherently valid by design,
such as in the case of a perfectly conducted random-
ized experiment. However, as we depart from this ideal—
especially in observational studies—these assumptions
must be grounded in substantive considerations about the
data, often referred to as an research design or identifica-
tion strategy [Angrist and Krueger, 1999].

There are now a fairly standard set of identification
strategies widely used in the empirical social sciences,
especially: adjusting or controlling for as many covari-
ates as possible (see Sec 2.2); instrumental variables; re-
gression discontinuity designs; and panel data strategies
like difference-in-differences. This raises the question:
besides these identification strategies, can we develop or
uncover others?

3.11.2 Background.
Synthetic controls. A recent method that has gained

much popularity is building synthetic controls [Abadie
and Gardeazabal, 2003, Abadie et al., 2010]. This ap-
proach is often used in panel data settings to create a
weighted average of control units that are balanced with
respect to the pre-treatment outcomes of a focal treated
unit. Since 2010, the number of applications of these
methods in various forms has exploded in both academic
settings and the private sector, especially in applications
in which standard panel data methods are not appropri-
ate. There has been an active methodological literature
exploring and extending this framework, including for un-
certainty quantification and bias correction.

Mendelian Randomization. In the context of instru-
mental variables, Mendelian randomization (MR) has
emerged as a promising strategy for uncovering causal ef-
fects [Sanderson et al., 2022]. Based on Mendel’s laws
of inheritance, this strategy leverages the inherent ran-
domness by which parents pass their genetic endowments
to their offsprings. For example, MR has been used to
explore the causal relationships between lifestyle factors
such as alcohol consumption, diet patterns, and physical
activity, and health outcomes such as cardiovascular dis-
ease. Despite major methodological improvements, some
open challenges remain. Pleiotropic effects, where ge-
netic variants influence multiple traits, can violate the ex-
clusion restriction assumption, requiring the development
of methods to detect and potentially adjust for these ef-
fects. Weak genetic instruments can produce biased esti-
mates and reduce statistical power, requiring robust meth-
ods that strengthen the relationship between the instru-
ment and the exposure. Furthermore, the selection and
validation of genetic variants as instruments is crucial,
requiring improved methods that integrate both biolog-
ical and statistical perspectives. Finally, comprehensive
guidelines that delineate best practices for MR estimation
are key to guide researchers in conducting robust analy-
ses.

Graphical models. Graphical models may uncover
novel identification opportunities beyond popular strate-
gies, some of which may still be underexplored. As an
example of a graphically inspired identification result,
Pearl [1995] proposed the front-door criterion. This strat-
egy has a similar structure to instrumental variables, in
which three variables are linked in a causal path. Here
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the treatment of interest affects a mediator, the media-
tor affects the outcome, and, importantly, there is not di-
rect causal path from the treatment to the outcome, other
than through the mediator. The causal effect of the treat-
ment on the outcome can then be identified through its
mediating effects, even in the presence of unobserved
treatment-outcome confounding, so long as the mediating
paths are unconfounded. This causal model has not yet
been widely explored in empirical social science, though
see Bellemare et al. [2024] for a recent application. More
broadly, if a novel graph presents new identification re-
sults, there is a question of how frequently such situations
occur in real-world settings. It is an interesting direction
where mathematics offers insights into the real world, as
opposed to the conventional approach of formalizing the-
ories from empirical observations.

3.11.3 Challenges.
Instrumental variables. There are many open chal-

lenges in extending instrumental variable approaches.
Shift-share IVs, which have seen increased popularity
in economics, exploit variation in the impact of external
shocks across time and regions to identify causal effects
[Borusyak et al., 2022]. Separately, bunching techniques
detect behavioral responses to policy changes through
clustering in outcome distributions [Kleven, 2016]. Both
offer promising directions for further methodological re-
search.

Panel data. Another relevant direction is panel data
methods, which exploit repeated measurements of sta-
ble units across time points [Arkhangelsky and Imbens,
2024]. Historically, this literature has been largely distinct
from the (mainly biostatistical) literature on time-varying
treatments. Bridging these two literatures is a fruitful re-
search direction. One recent example is for case-crossover
designs, which provide a framework for examining tran-
sient exposures and acute events by comparing case (ex-
posure) periods with control periods for the same individ-
ual [Shahn et al., 2023]. Exploring alternative identifica-
tion strategies that involve forms of latent unconfound-
edness offers interesting challenges for identification and
inference [Athey and Imbens, 2025].

Proximal methods. Additionally, the use of negative
controls is gaining traction as a method for detecting and
addressing confounding bias and model misspecification
by leveraging variables or populations that are not ex-
pected to have causal effects as a benchmark [Tchetgen
Tchetgen, 2014]. These emerging methods collectively
contribute to advancing proximal causal inference, a gen-
eral framework that seeks to bridge different identification
strategies [Tchetgen Tchetgen et al., 2024].

Combining strategies. As we have discussed, it is cru-
cial to understand that the aforementioned strategies are
not mutually exclusive. Hence, an important question, is
how to substantively combine them for more robust causal
inference.

3.12 Large Language Models and Causality

3.12.1 Motivation Large Language Models (LLMs)
have burst onto the scene over the past several years, dra-
matically changing research across a wide range of do-
mains in a short period. We are starting to see this impact
in causal research as well. There is a growing literature
at the interface of LLMs and causality, both on how to
use LLMs to improve causal inference and on using ideas
from causality for improving LLMs. Since this area is in
flux, we offer a brief overview of some exciting topics
here, recognizing that this literature is changing rapidly.

3.12.2 Background and Challenges
Incorporating complex data into the causal inference

pipeline. Over the last decade, Natural Language Pro-
cessing (NLP) methods have become increasingly com-
mon for leveraging text for causal inference, including
as confounders, treatments, and outcomes [Veitch et al.,
2020, Egami et al., 2022, Feder et al., 2022, Imai and
Nakamura, 2024]. For example, researchers might be in-
terested in the effect of reading different messages on
a downstream outcome, and then try to isolate key at-
tributes that explain these effects [Gui and Veitch, 2022,
Lin et al., 2024b]. Building on these earlier ideas, the
widespread availability of LLM tools has rapidly accel-
erated the use and scale of causal inference with text,
as well as causal inference with other unstructured high-
dimensional data, like images [Jerzak et al., 2023, Imai
and Nakamura, 2025]. Many open questions remain on
how best to incorporate LLMs into the causal inference
pipeline, including developing best practices for architec-
ture and representation learning and appropriately quanti-
fying uncertainty. Additional issues arise when LLMs and
other generative AI systems are used to generate the inter-
ventions of interest—even defining the appropriate causal
questions here is challenging.

Synthetic experiments and Agentic Modelling. Artifi-
cial or synthetic experiments are one explicitly causal area
that has already seen preliminary work. Suppose one is
interested in the effect of a particular intervention, say ex-
posing individuals to a social media post about vaccines,
on the likelihood they would subsequently take the vac-
cine. One could simply ask an LLM what the effect of
such a post would be. More recent work however, has ad-
dressed such questions by creating a sample of artificial
agents, and running an experiment on these agents, just
like a regular experiment on real humans. See, for exam-
ple, Hewitt et al. [2024], De Bartolomeis et al. [2025],
Chen et al. [2025], Wang et al. [2025a], Manning et al.
[2024]. Such experiments seem to hold great promise in
select settings given the speed with which one can con-
duct them and the avoidance of many (but not necessarily
all) ethical issues.
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At the same time, the performance of synthetic experi-
ments in more realistic settings is an important open ques-
tion; see Gui and Toubia [2023], Anthis et al. [2025]. For
example, in the parallel literature on synthetic audiences—
using artificial agents to approximate survey respondents—
there has been growing concern about out-of-sample per-
formance [e.g., Li et al., 2025, von der Heyde et al.,
2025]. Going forward, it does seem likely that LLMs will
be very helpful in augmenting randomized experiments.
This can be in the form of performing initial runs using
artificial agents, followed by targeted experiments using
real individuals, or by replacing actual experiments en-
tirely in some special cases. One challenge is to validate
the results from artificial experiments, and to assess the
uncertainty surrounding their results. Another is to under-
stand what features of such artificial experiments make
them more or less reliable.

LLMs and causal reasoning. Whether LLMs have
some version of causal reasoning capabilities is an ac-
tive research area [Kiciman et al., 2023, Jin et al., 2023].
Examples include chain-of-thought reasoning [Wei et al.,
2022] and hierarchical reasoning [Wang et al., 2025b].
These questions are closely related to causal discovery
and suggest many promising directions for incorporating
LLMs to better understand complex causal systems. For
example, an interesting question is whether current LLMs
can discover causal relations from correlations [Jin et al.,
2024], or if they can be used to provide common sense
knowledge e.g., as experts in the loop in combination
with classic causal discovery tools [Ankan and Textor,
2025] or as imperfect experts providing an initial causal
ordering [Vashishtha et al., 2025]. Finally, there is also
great interest in training transformers, i.e., the backbone
of many modern LLMs, as a foundation model to estimate
causal effects [Ma et al., 2025, Balazadeh et al., 2025].

AI co-pilots for causal inference. Echoing the use of
AI tools to automate data analysis (see Section 3.9),
there have been several recent efforts to use AI tools
as “co-pilots” in aiding applied causal inference [Alaa
et al., 2024, Verma et al., 2025] and in study planning
more broadly [Chang et al., 2024a]. This direction shows
promise as a means for democratizing applied causal in-
ference research especially.

Causality to improve LLMs. The alternative direction
has also shown great promise: using the ideas of causal-
ity and causal inference to improve AI development and
deployment. For example, causal reasoning has proved
important in developing more trustworthy and reliable
AI deployments [Binkyte et al., 2025] and in better un-
derstanding preference learning methods used to train
LLM [Lin et al., 2024a, Kobalczyk and van der Schaar,
2025]. Causal inference is also critical for evaluating and
monitoring deployed AI systems [Liu et al., 2025]. An-
other promising direction is the use of causal abstraction,

i.e., the theory describing the relations between different
causal models at different granularities, as a way to inter-
pret the internal mechanisms of the black-box LLMs, e.g.,
[Geiger et al., 2021, Wu et al., 2023, Geiger et al., 2024].

Open questions. LLMs have burst onto the scene in a
very short time, and have already had major impacts on
many areas of study. The impact on causality and causal
inference is still limited at the moment, but likely to be
profound. Exactly where this will be is a difficult question
to answer, and we are excited to see what develops.

4. CONCLUDING THOUGHTS

For centuries, the quest to establish causation has been
central to scientists in their efforts to uncover the laws that
govern the natural world. In today’s society, a similar as-
piration drives policy makers: to find which interventions
work to build a better social world. We seek to understand
causation, uncover natural laws, and learn which interven-
tions work through data from the real world—a process
known as causal inference. This is a perennial quest that
will never end.

4.1 Many additional directions

In this paper, we explore this issue from the perspec-
tive of statistics and related fields, yet there is much to
gain integrating diverse perspectives and fostering cross-
disciplinary work. While we provide an overview and dis-
cuss some of the open challenges in causal inference from
this perspective, this is merely a partial map of a much
broader landscape. There are many others that we have
not addressed.

Time and dynamics. One such challenge is incorporat-
ing more complex temporal dimensions. While we cov-
ered various principles and problems that generally apply
to causal studies with increased temporal measurements,
this dimension adds a specific complexity. Despite the 40
years of progress since Robins’s [1986] foundational pa-
per, integrating time-dependence—encompassing treat-
ments, covariates, outcomes, and their feedback—into
routine causal analyses remains a persistent challenge.

Bayesian causal inference. Another challenge involves
using Bayesian methods for causal inference. Although
Bayesian approaches have been proposed and adopted,
especially in the literature on heterogeneous treatment
effects and causal machine learning [e.g., Hill, 2011,
Hahn et al., 2020], the frequentist paradigm has tradition-
ally dominated the field. Useful perspectives on Bayesian
methods for causal inference are provided in, among oth-
ers, Li et al. [2023] and Daniels et al. [2023].

Designing observational studies and target trial emu-
lation. Furthermore, a core idea in causal inference is to
cast causal questions in terms of concrete interventions
and conceptualize them in the context of hypothetical ran-
domized experiments. This notion has a long history, dat-
ing back at least to the work of Dorn [1953] and Cochran
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[1965]. In this tradition, one widely adopted framework in
the health sciences is that of target trial emulation [Hernán
and Robins, 2016]. A key challenge is how to effectively
apply this approach in other scientific domains and policy
contexts.

Causes of effects. Finally, while we have focused on the
question of the effect of causes, the reverse question of
the causes of effects is also important [Dawid and Musio,
2022]. This type of questions emerges often in legal con-
texts, for instance, in determining whether a certain drug
caused a health problem.

All these challenges and possible research directions in-
tersect and compound each other, opening up new oppor-
tunities to advance causal inference.

4.2 Cross-cutting issues

Our main discussion raises several cross-cutting issues
that we want to emphasize again here.

Bridging the gap between theory and practice. Every
challenge we discuss above faces a familiar disconnect
between applications and theory. There is an urgent need
to make state-of-the-art methods accessible and applica-
ble to address substantive research problems in practice
and to facilitate their adoption. This requires deep engage-
ment with substantive experts, the development of better
software and practical diagnostics, and better guidance
and outreach. In the other direction, such engagement will
hopefully lead to new and exciting methodological chal-
lenges, following a long tradition of advances in causal
inference.

Gains from incorporating machine learning and com-
putational tools. Over the last two decades, the widespread
availability of improved computation and machine learn-
ing methods has led to fundamental changes in the prac-
tice of causal inference and launched the increasingly in-
fluential subfield of “causal machine learning.” Today,
powerful LLM and AI tools offer similar promise, and
we anticipate exciting uses for these new technologies in
causality research.

Importance of building an open and inclusive research
community. As we outline above, causality research has
historically been highly fractured, with often distinct and
isolated research communities. Over the last decade es-
pecially, there has been substantial progress in creating a
“big tent” causal community. In addition to making the
field more welcoming and inclusive, this has also led to
important research advances and more rapid adoption of
novel ideas. Furthering such efforts is critical for the con-
tinued growth and evolution of causality research.

4.3 Asking good questions

In the end, the central challenge in causality research is
to continue to ask good questions. We have posed many

questions for the causal community here. But as the field
continues to grow, what questions are we missing or fail-
ing to ask?
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