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Abstract

We introduce the BREASE framework for the Bayesian analysis of randomized

controlled trials with a binary treatment and a binary outcome. Approaching the

problem from a causal inference perspective, we propose parameterizing the likeli-

hood in terms of the baseline risk, efficacy, and adverse side effects of the treatment,

along with a flexible, yet intuitive and tractable jointly independent beta prior dis-

tribution on these parameters, which we show to be a generalization of the Dirichlet

prior for the joint distribution of potential outcomes. Our approach has a number

of desirable characteristics when compared to current mainstream alternatives: (i) it

naturally induces prior dependence between expected outcomes in the treatment and

control groups; (ii) as the baseline risk, efficacy and risk of adverse side effects are

quantities commonly present in the clinicians’ vocabulary, the hyperparameters of

the prior are directly interpretable, thus facilitating the elicitation of prior knowledge

and sensitivity analysis; and (iii) we provide analytical formulae for the marginal

likelihood, Bayes factor, and other posterior quantities, as well as exact posterior

sampling via simulation, in cases where traditional MCMC fails. Empirical exam-

ples demonstrate the utility of our methods for estimation, hypothesis testing, and

sensitivity analysis of treatment effects.

1 Introduction

Randomized controlled trials (RCTs) form the cornerstone of scientific research across

numerous disciplines. In their most basic form, these trials compare the occurrence of an
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adverse (or favorable) outcome between treatment and control groups. This is particularly

evident in a drug or vaccine trial, in which the efficacy of an intervention is established by

comparing the number of individuals who die or develop a disease in each arm of the study.

We refer to this type of study design as a “binary experiment,” wherein each participant is

subjected to either a treatment or a control condition (a binary exposure), and we observe

either the presence or absence of the adverse effect of interest (a binary outcome).

If participants of the trial are independent draws from a common (super-)population,

statistical inference in binary experiments amounts to what is perhaps the simplest of tasks

in statistics—the comparison of two binomial proportions. Indeed, from a Bayesian per-

spective, inference on the parameter of a binomial distribution dates back to at least as

early as the origins of Bayesian inference itself, as evidenced by the seminal works of Bayes

(1763) and Laplace (1774). The task comprises specifying a joint prior distribution for

both binomial parameters, and computing the posterior distribution (or Bayes factors) of

(relevant contrasts of) such parameters (e.g., the risk difference, or the risk ratio). Yet,

perhaps surprisingly, despite this long tradition, their widespread occurrence in the sci-

ences, and the apparent simplicity of the inferential task, mainstream approaches for prior

specification in the analysis of binary experiments have several shortcomings.

As reviewed in Agresti and Min (2005) and Dablander et al. (2022) (and also evident

from perusing popular textbooks1) the two predominant approaches for the Bayesian anal-

ysis of binary experiments consist of: (i) assigning independent beta priors to each of

the binomial proportions, which are conjugate priors to the (also independent) binomials

comprising the likelihood; and, (ii) what is essentially a logistic regression, i.e., applying

a logit transformation to the binomial proportions, and assigning Gaussian priors to the

average log odds and the log odds ratio. For all their popularity, these two approaches are

unsatisfactory in several ways. For example, in the first case, the assumption of prior inde-

pendence of the two proportions is often not credible—e.g., in most settings, one expects

that learning about the mortality rate in the control group should inform our beliefs about

the mortality rate in the treatment group. Moreover, while the logit approach addresses the

problem of prior dependence, it does so at the sacrifice of clarity and interpretation—odds

ratios are notoriously difficult to understand (Davies, Crombie, and Tavakoli, 1998), thus

hindering the utility of this approach for prior elicitation and sensitivity analysis.

In this paper we demonstrate how causal logic can be used to address these challenges.

Approaching the problem from a causal inference perspective, we first propose parameter-

1See, e.g., Gelman et al. (1995), Kruschke (2014), and McElreath (2020).
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izing the likelihood in terms of three clinically meaningful counterfactual quantities: the

baseline risk, efficacy, and risk of adverse side effects (BREASE) of the intervention. We

then propose a flexible, yet intuitive and tractable jointly independent beta prior distribu-

tion on these parameters, which we show to be a generalization of the Dirichlet prior on

the joint distribution of potential outcomes. Our approach has a number of desirable char-

acteristics: (i) it naturally induces prior dependence between the two binomial proportions

of the treatment and control arms of the study; (ii) as the baseline risk, efficacy and risk of

adverse side effects are quantities familiar to clinicians, the hyperparameters of the prior

are directly interpretable, thus facilitating the elicitation of prior knowledge and sensitivity

analysis; and (iii) we derive analytical formulae for the marginal likelihood, Bayes factor,

and other posterior quantities, as well as exact posterior sampling via simulation, in cases

where traditional MCMC fails.

Related literature. When framed in the language of potential outcomes, causal infer-

ence can be seen as a missing data problem. Thus, our analysis is most closely related to

the literature on contingency tables with missing or incomplete observations on certain cell

counts. In fact, our proposed prior can be shown to induce a generalized Dirichlet distri-

bution on the joint distribution of potential outcomes. This distribution has been studied

in the 1970s and 1980s (Antelman, 1972; Kaufman and King, 1973; Dickey, 1983; Dickey,

Jiang, and Kadane, 1987), though mostly in the context of survey sampling.2 Perhaps due

to the intractability of the integrals, the difficulty in interpretation of the original gener-

alized Dirichlet parameterization, and the missing connection to formal causal inference,

this prior has received little to no attention in the analysis of binary experiments.3 Our

analysis shows that the generalized Dirichlet distribution emerges naturally from the causal

formulation of the problem, that the parameters of the distribution can be cast in intuitive

clinical terms, and that statistical inference is manageable, with exact posterior sampling

and analytical formulae for Bayes factors, which we derive in this paper.4

2Similar priors have also appeared in the analysis of diagnostic testing, such as in Branscum, Gardner,
and Johnson (2005). This literature seems to be unaware of its connections with the generalized Dirichlet
distribution, and some of the results we provide here, such as exact sampling, and analytical formulae for
the marginal likelihood, could also be potentially applied to such settings (we leave this to future work).

3Related to our setup are studies that have used a traditional Dirichlet distribution on response types.
This can be shown to be a special case of our proposal, and we discuss it in Sections 2.3 and 3.

4The history of statistical analysis of contingency tables is extensive; Killion and Zahn (1976) and
Agresti and Hitchcock (2005) provide comprehensive reviews. Along the lines of relevant studies already
mentioned, Tian, Ng, and Geng (2003) and Ng, Tang, et al. (2008), identify special cases of Dickey’s
generalized Dirichlet which admit alternative stochastic representations and simplified computation of
posterior quantities. Less relevant to our proposed methodology, other priors used to model contingency
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Outline of the paper. Section 2 introduces the statistical setup for the analysis of

binary experiments and reviews existing methods for Bayesian inference in this setting.

Section 3 introduces our proposal. It also derives key results for implementation, such as

analytical formulae for the marginal likelihood and algorithms for exact posterior sampling.

Section 4 demonstrates the utility of our method in three empirical examples. Section 5

concludes the paper, and suggests possible extensions for future research.

2 Preliminaries

In this section we set notation, the statistical setup, and briefly review the two main ap-

proaches currently used for the Bayesian analysis of binary experiments—the independent

beta and logit transformation approaches. We also briefly introduce the response type

parameterization of the joint distribution of potential outcomes, which is an important

stepping stone for understanding our proposal.

2.1 Potential outcomes

Our analysis is situated within the potential outcomes framework of causal inference (Ru-

bin, 1974; Neyman, 1990). Let N denote the total number of participants in the study, Zi

a binary treatment indicator and Yi a binary outcome indicator for subject i ∈ {1, . . . , N}.
We denote by Yi(z) the potential outcome of subject i under the experimental condition

Zi = z, where z = 0 indicates the control and z = 1 the treatment condition. Under the

standard consistency assumption, we have that the observed outcome of subject i equals

the potential outcome associated to the experimental condition that subject i has actually

received, i.e., Yi = Yi(Zi). Throughout the paper, we adopt the convention that Yi = 1

denotes an adverse outcome, such as death or the contraction of a disease. We take a

super-population perspective, and assume that subjects are independent and identically

distributed (i.i.d.) draws from a common population. We assume complete randomization,

which implies ignorability of the treatment assignment, {Yi(1), Yi(0)} ⊥⊥ Zi.

2.2 Marginal parameterization

When subjects are independently drawn from a common super-population and the treat-

ment is assigned at random, it follows that the observed counts of adverse outcomes in

table proportions have been proposed in Leonard (1972, 1975), Albert and Gupta (1982), Basu and Pereira
(1982), Albert and Gupta (1983a,b, 1985), and Park and Brown (1994).
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each treatment arm,

y0 =
∑
i:Zi=0

Yi, y1 =
∑
i:Zi=1

Yi,

follow independent binomial distributions:

y0 ∼ Binomial(N0, θ0) ⊥⊥ y1 ∼ Binomial(N1, θ1),

where here, θ1 = P(Yi(1) = 1), N1 =
∑

i Zi denote the probability of an adverse outcome

and the sample size of the treatment group, and θ0 = P(Yi(0) = 1), N0 = N −N1 are the

analogous quantities for the control group.5 We refer to the probabilities θ0 and θ1 as the

baseline risk and risk of treatment, respectively.

This defines the likelihood under the marginal parameterization of a binary experiment—

so called because the parameters (θ0, θ1) are defined in terms of the marginal distribution

of the potential outcomes Yi(0) and Yi(1):

L(D|θ0, θ1) =
(
N0

y0

)
θy00 (1− θ0)

N0−y0 ×
(
N1

y1

)
θy11 (1− θ1)

N1−y1 , (2.1)

where hereafter we denote the observed data by D = (y0, y1, N0, N1). To determine the

effect of treatment, if any, Bayesian inference is carried out using the posterior distribution

of the parameters (θ0, θ1), which requires specification of a prior distribution for (θ0, θ1).

There are two main parameterizations with accompanying priors currently in use, dis-

cussed extensively in Agresti and Min (2005) and Dablander et al. (2022)—these are the

independent beta (IB) and logit transformation (LT) approaches, which we now discuss.

2.2.1 Independent beta (IB) approach

The independent beta (IB) approach (Jeffreys, 1935) assigns the prior6

θ0 ∼ Beta(a0, b0) ⊥⊥ θ1 ∼ Beta(a1, b1), (2.2)

for some hyperparameters a0, b0, a1, b1 > 0. A common specification is a0 = b0 = a1 =

b1 = 1, which assigns a uniform distribution to (θ0, θ1). This choice of flat priors is usually

5The likelihood of the observed outcomes, conditional on the treatment assignment vector Z1, . . . ZN ,
factorizes as P(Y1 . . . , YN | Z1 = z1, . . . , Zn = zn) = P(Y1(z1), . . . , YN (zN ) | Z1 = z1, . . . , ZN = zN ) =
P(Y1(z1), . . . , YN (zN )) =

∏
i P(Yi(zi)) =

∏
i:Zi=1 P(Yi(1))

∏
i:Zi=0 P(Yi(0)), where the first equality is due

to consistency, the second equality due to ignorability of the treatment assignment, and the third equality
due the assumption that the subjects are i.i.d. draws from a common super-population. Therefore, the data
can be seen as a sequence of independent Bernoulli trials, and the counts y0, y1 as independent binomials.
Note this equivalence does not hold under a finite population perspective; see Ding and Miratrix (2019).

6Here X ∼ Beta(a, b) denotes the probability distribution on the unit interval [0, 1] with Lebesgue
density proportional to xa−1(1− x)b−1.
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thought to encode ignorance of (θ0, θ1) a priori, though it makes strong implicit assumptions

as we discuss next. We refer to (2.2) as the IB(a; b) prior, where a = (a0, a1), b = (b0, b1).
7

The main advantage of the IB approach is its simplicity. As the beta prior is conju-

gate to the binomial likelihood, estimation and posterior simulation can be carried out

exactly without resorting to approximate sampling algorithms, such as MCMC. Further-

more, marginal likelihoods and Bayes factors, which are widely used for Bayesian hypothesis

testing and can be difficult to calculate in general (usually requiring numerical approxi-

mation or estimation via posterior simulation), can be calculated analytically (Kass and

Raftery, 1995).

A significant drawback of the IB approach is the restrictive assumption of independence

between θ0 and θ1. In most experimental settings, we would expect our knowledge about the

risks in the control and treatment groups to be dependent. For example, if we known that

the population prevalence of an infectious disease is approximately 1%, we would expect

the prevalence of the disease among those receiving a vaccine to be concentrated around

1% or below, reflecting the common prior belief that it is unlikely that the vaccine would

cause the disease. The IB prior fails to accommodate this natural dependence between risks

in each arm of the trial. Furthermore, since independence in the prior and the likelihood

implies independence a posteriori, this failure also extends to the posterior.

2.2.2 Logit Transformation (LT) approach

The logit transformation (LT) approach (Kass and Vaidyanathan, 1992; Agresti and Hitch-

cock, 2005; Dablander et al., 2022) reparameterizes the model in terms of the logit-

transformed risks, by defining the parameters (β, ψ) satisfying

log

(
θ0

1− θ0

)
= β − ψ

2
, log

(
θ1

1− θ1

)
= β +

ψ

2
.

Note this parameterization is equivalent to a logistic regression of the outcome on the

treatment with the encoding Z ∈ {−1/2, 1/2} (Gronau, Raj, and Wagenmakers, 2021). It

then assigns an independent normal prior to (β, ψ):

β ∼ Normal(µβ, σ
2
β) ⊥⊥ ψ ∼ Normal(µψ, σ

2
ψ), (2.3)

7Note that if we consider outcomes with multiple categories (e.g, as in Thall, Simon, and Estey, 1995),
the analogous prior here is to assign independent Dirichlet distributions to the vector of probabilities of
each arm of the study. This should not be conflated with assigning a Dirichlet prior to the joint distribution
of potential outcomes, which we discuss in Section 2.3.
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θ0

y0

θ1

y1

(a) Independent Beta

θ0

y0

θ1

y1

β ψ

(b) Logit Transform

θ0

y0

θ1

y1

p

(c) Response Type

θ0

y0

θ1

y1

ηs

ηe

(d) BREASE

Figure 1: Probabilistic graphical models for different parameterizations and prior setups.
Gray nodes denote observed variables, white nodes denote latent parameters, and double
borders indicate that a node is a deterministic function of its parents. (a) Independent
beta priors are placed directly on θ0 and θ1; (b) Independent Gaussian priors are placed
on the log odds quantities β and ψ; (c) A Dirichlet prior is placed on the response type
probabilities p; (d) Our proposal, independent beta priors are placed on θ0, ηe, and ηs. In
all cases, the observed data depends only on θ0 and θ1.

where µ = (µβ, µψ) and σ = (σβ, σψ) > 0 are hyperparameters. This prior encodes correla-

tion between θ0 and θ1 through their shared dependence on β and ψ. We refer to (2.3) as

the LT(µ;σ) prior. Figure 1 depicts probabilistic graphical models comparing the IB and

LT parameterizations, as well as the other approaches we will introduce in this paper.

While the LT approach induces prior dependence between θ0 and θ1, this comes at the

cost of a less intuitive parameterization. Here β is interpreted as the “grand log odds,” i.e,

the average of the log odds across treatment arms, whereas ψ is the log odds ratio. Odds

ratios are notoriously difficult to understand, and thus reasoning about the plausible prior

means and variances of log odds—two unbounded hyperparameters—is often challenging in

practice. The LT approach also has other computational disadvantages relative to the IB

prior. Unlike the IB approach, marginal likelihoods and Bayes factors for the LT approach

are not available analytically, and posterior sampling must be carried out approximately.

2.3 Response type (RT) parameterization

The IB and LT approaches focus on the margins of the joint distribution of the potential

outcomes Yi(0) and Yi(1). This focus is natural, because the observed data depends only

upon the parameters θ0 and θ1. However, thinking in terms of their joint distribution reveals

alternative ways of inducing prior dependence between these parameters. Specifically, the
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Yi(0) = 0 Yi(0) = 1 Row Sum

Yi(1) = 0 p00 = (1− ηs)(1− θ0) p10 = ηeθ0 1− θ1

Yi(1) = 1 p01 = ηs(1− θ0) p11 = (1− ηe)θ0 θ1

Column Sum 1− θ0 θ0

Table 1: 2× 2 contingency table of potential outcomes for a binary experiment. Only the
margins of the table are identified from the observed data.

joint distribution of potential outcomes is fully characterized by four probabilities

pjk = P(Yi(0) = j, Yi(1) = k), j, k ∈ {0, 1}. (2.4)

The probabilities p = {pjk}j,k∈{0,1} describe the frequencies of the four possible response

types in the population (Copas, 1973; Greenland and Robins, 1986).8 These include:

(i) the “doomed” {Yi(0) = 1, Yi(1) = 1}, for whom the adverse outcome occurs regardless

of treatment; (ii) the “immune” {Yi(0) = 0, Yi(1) = 0}, for whom the adverse outcome does

not occur regardless of treatment; (iii) the “preventive” {Yi(0) = 1, Yi(1) = 0}, for whom
treatment prevents the adverse outcome; and, (iv) the “causal” {Yi(0) = 0, Yi(1) = 1}, for
whom treatment causes the adverse outcome. Here θ0 and θ1, which satisfy θ0 = p10 + p11

and θ1 = p01 + p11, define the margins of Table 1.

Whereas in the marginal parameterization, independence of the likelihood and prior

imply that estimation of θ0 is only informed by data in the control group (and similarly

for θ1), the response type (RT) parameterization intertwines the data from each arm of the

study. The shared dependence of θ0 and θ1 on the response type proportions reveals the

link between outcomes in the control and treated groups.

A Bayesian approach to modeling the response type probabilities p requires specification

of a prior density supported on the probability simplex, making the Dirichlet distribution

a natural candidate9

p = (p00, p10, p01, p11) ∼ Dirichlet(a00, a10, a01, a11), a00, a10, a01, a11 > 0. (2.5)

Indeed, priors of this type have been used in the analysis of partially identified quantities

in randomized trials with non-compliance, such as in Chickering and Pearl (1996).10 As

8These probabilities are also known as “probabilities of causation” (Tian and Pearl, 2000; Pearl, 2009);
for instance, P(Yi(0) = 1, Yi(1) = 0) is referred by Tian and Pearl (2000) as the probability that the
treatment is both necessary and sufficient to prevent an adverse outcome.

9Here (p1, . . . , pk) ∼ Dirichlet(a1, . . . , ak) denotes the probability distribution on the simplex with

Lebesgue density proportional to
∏k

i=1 p
ai−1
i .

10See also Imbens and Rubin (1997), Madigan (1999), and Hirano et al. (2000).
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we show next, the Dirichlet prior is a special case of our proposal, and our analysis not

only extends it, but also clarifies its advantages and limitations as a means to induce the

desired joint prior distribution on the two binomial proportions (θ0, θ1).

3 The BREASE framework

In this section we introduce the BREASE framework for the analysis of binary experiments.

We start by parameterizing the likelihood in terms of the baseline risk, efficacy, and risk

of adverse side effects of the treatment. We then propose a jointly independent beta

prior distributions on these three parameters, which we show to be a generalization of

the Dirichlet prior on the response types. Our proposal has a number of advantages.

From a statistical perspective, it induces dependence between the risks in the treatment

and control groups, while also enabling exact posterior sampling, and marginal likelihood

calculations. From a clinical perspective, this parameterization casts the model in terms

of natural quantities appearing frequently in the clinician’s vocabulary, thereby facilitating

interpretability, elicitation of prior knowledge, and sensitivity analyses.

3.1 Baseline risk, efficacy and adverse side effects

To make things concrete, suppose Yi = 1 denotes death. We define the efficacy of the

treatment, ηe, as the probability that the treatment prevents the death of a patient that

would have otherwise died without it:

ηe = P(Yi(1) = 0|Yi(0) = 1). (3.1)

Similarly, we define the risk of adverse side effects of the treatment, ηs, as the probability

that the treatment causes the death of a patient that would have otherwise been healthy:11

ηs = P(Yi(1) = 1|Yi(0) = 0). (3.2)

These quantities can be interpreted as probabilities of sufficient causation (Tian and Pearl,

2000; Cinelli and Pearl, 2021), i.e., ηe is the probability that treatment is sufficient to save or

cure a patient, while ηs is the probability that treatment is sufficient to kill or hurt a patient.

11Note these are severe adverse side effects that result in an outcome (e.g, death) opposite to the desired
outcome of interest (i.e, survival). In the medical literature, this is sometimes called a “paradoxical
reaction” (Smith, Hauben, and Aronson, 2012). Such events could be the result not only of severe adverse
biological reactions, but also of other forms of iatrogenesis, such as medical errors.
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They correspond directly to the counterfactual interpretation of what clinicians colloquially

refer to as “efficacy” and “side effects” of a drug or vaccine. Indeed, not coincidentally,

a commonly used measure in clinical trials called “efficacy”, defined as 1 − θ1/θ0, equals

precisely ηe under the assumption that treatment causes no harm (ηs = 0).

Applying the law of total probability, we can decompose the risk of treatment in terms

of the baseline risk, efficacy, and risk of adverse side effects (BREASE), as

θ1 = (1− ηe)θ0 + ηs(1− θ0). (3.3)

Table 1 shows how the response type probabilities p can be written as products of θ0, ηs,

and ηe. As with the response type approach, this parameterization highlights the natural

dependence between θ0 and θ1 that is nevertheless easy to miss without framing the problem

in the language of potential outcomes. For example, note that θ0 and θ1 are functionally

independent only under the strong assumption that ηe = 1 − ηs, i.e., the probability of

treatment saving a patient is equal to the probability that it doesn’t kill one.

3.1.1 Likelihood

Plugging in (3.3), we can rewrite the likelihood (2.1) in terms of (θ0, ηe, ηs).

Theorem 1. Under (2.1) and (3.1-3.3), the likelihood is

L(D|θ0, ηe, ηs) =
(
N0

y0

)(
N1

y1

) y1∑
j=0

N1−y1∑
k=0

(
y1
j

)(
N1 − y1

k

)
× θy0+j+k0 (1− θ0)

N−(y0+j+k)

× ηke (1− ηe)
j

× ηy1−js (1− ηs)
N1−y1−k, (θ0, ηe, ηs) ∈ [0, 1]3. (3.4)

Theorem 1 follows from applying the binomial theorem twice. As the likelihood (3.4)

is polynomial in (θ0, ηe, ηs), any prior distribution π(θ0, ηe, ηs) for which the moments can

be explicitly calculated yields an analytical expression for the marginal likelihood. In

particular, if

π(θ0, ηe, ηs) ∝ θα0−1
0 (1− θ0)

β0−1 × ηαe−1
e (1− ηe)

βe−1 × ηαs−1
s (1− ηs)

βs−1

is a product of independent beta distributions, as we will see in the next section, then the

marginal likelihood is a weighted sum of beta function values. Furthermore, the posterior

distribution π(θ0, ηe, ηs|D) will be a mixture of independent beta distributions, from which

we can sample exactly via simulation.
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3.1.2 Partial identification and monotonicity

The parameters ηe and ηs are only partially identified by the observed data. That is,

without further assumptions, we have the following bounds,

max

{
0, 1− θ1

θ0

}
≤ ηe ≤ min

{
1− θ1
θ0

, 1

}
, max

{
0,
θ1 − θ0
1− θ0

}
≤ ηs ≤ min

{
θ1

1− θ0
, 1

}
.

Thus, as the sample size increases, the posterior distribution of ηs and ηe will not concen-

trate in a point—rather, it will remain spread over its partially identified region (Richard-

son, Evans, and Robins, 2011; Gustafson, 2015). Notice, however, that this does not affect

the behavior of the posterior distribution of (θ0, θ1). The BREASE parameterization thus

explicitly separates the identified and partially identified parameters—(θ0, θ1) and (ηe, ηs),

respectively. Even if interest does not lie in the counterfactual probabilities (ηs, ηe) per

se, assigning a prior to those quantities can be thought of as a causally principled way to

specify a joint prior on the identified target parameters (θ0, θ1).

Finally, a common assumption in the potential outcomes literature is called monotonic-

ity, which states that the treatment does no harm. In our framework, this corresponds

to the constraint ηs = 0. This assumption is reasonable in many clinical settings. Un-

der monotonicity, the efficacy of the treatment is in fact point identified, and given by

ηe = 1 − θ1/θ0. The quantity θ1/θ0 is known as the risk ratio, and the quantity 1 − θ1/θ0

is indeed known as “efficacy” in the clinical trials literature. While the hard constraint

ηs = 0 may not be credible in some settings, if side effects are expected to be small, the

BREASE approach allows one to instead place an informative prior on ηs.

3.2 Prior specification

Bayesian inference with the likelihood (3.4) requires specifying a prior distribution on three

separate and variation independent probabilities, (θ0, ηe, ηs). We propose setting jointly

independent beta prior distributions on these parameters:

θ0 ∼ Beta∗(µ0, n0) ⊥⊥ ηe ∼ Beta∗(µe, ne) ⊥⊥ ηs ∼ Beta∗(µs, ns), (3.5)

where here Beta∗(µ, n) denotes a Beta(a, b) distribution, with mean µ = a/(a + b) and

prior “sample size” n = a + b. We refer to (3.5) as the BREASE(µ;n) prior, where

µ = (µ0, µe, µs), n = (n0, ne, ns).

Since (3.5) defines a jointly independent beta prior on (θ0, ηe, ηs), the discussion in

Section 3.1.1 applies. In particular, the posterior of (θ0, ηe, ηs) is a mixture of independent

11



betas, which permits exact sampling via simulation, and the marginal likelihood is available

analytically as a weighted sum of beta functions, as we show in Sections 3.3 and 3.4.

Connections to the (generalized) Dirichlet. The prior (3.5) induces a generalized

Dirichlet distribution (Dickey, 1983; Dickey, Jiang, and Kadane, 1987; Tian, Ng, and Geng,

2003) on the vector of potential outcomes probabilities p—see Appendix B for derivation

and further discussion. In particular, the generalized Dirichlet reduces to the traditional

Dirichlet distribution (2.5) for the following restricted choice of prior sample sizes

ne = µ0n0, ns = (1− µ0)n0. (3.6)

Moreover, since θ1 = p01+ p11, by the aggregation property of the Dirichlet (Ng, Tian, and

Tang, 2011), marginally we have

θ1 ∼ Beta∗ ((1− µe)µ0 + µs(1− µ0), n0) , (3.7)

which mirrors the decomposition (3.3). The BREASE approach thus reveals an implicit

“equal confidence” assumption of the Dirichlet: the prior spread for θ0 determines the

spread of the distributions of ηe, ηs, and θ1 a priori. Hence, the Dirichlet is underparam-

eterized, and unsuitable for cases in which, say, we have ample knowledge of the baseline

risk but relatively little information about the possible efficacy or side effects of the treat-

ment (or vice-versa). Casting the likelihood in terms of the BREASE parameters makes

such choices explicit, by allowing the hyperparameters governing θ0, ηe and ηs to be set

independently.

3.2.1 Induced prior distribution of (θ0, θ1)

As mentioned in Section 3.1.2, our goal with the BREASE approach is primarily to induce

causally sound priors on the identified parameters of interest, the two binomial proportions

(θ0, θ1). Thus we now discuss the induced marginal and conditional distribution of the risk

of treatment, θ1, under the BREASE prior (3.5).

From equation (3.3) we see that θ1, conditionally on θ0, is distributed as a convex

combination of independent beta random variables a priori. This distribution was studied

in Pham-Gia and Turkkan (1998) and is given in terms of Appell’s first hypergeometric

function F1—in Appendix A we derive the explicit formula and provide further discussion.

From here, the marginal prior on θ1 can be obtained as π(θ1) =
∫ 1

0
π(θ1|θ0)π(θ0)dθ0. While

the general formula for π(θ1|θ0) may look unwieldy, and the integration in π(θ1) prohibitive,
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there are noteworthy specific cases.

Equal confidence. As noted in the previous discussion, under the equal confidence as-

sumption, ne = µ0n0, ns = (1 − µ0)n0, the marginal prior induced on θ1 is the beta

distribution in (3.7). In particular, to obtain equal marginal priors for the treatment and

control groups, i.e., θz ∼ Beta(µ0, n0) for z ∈ {0, 1}, it suffices to set µs = (µ0/(1− µ0))µe,

with 0 ≤ µe ≤ min(1, (1− µ0)/µ0). Choosing µ0 = 1/2, n0 = 2, and µe = µs = µ results in

marginal uniform priors with prior correlation Cor(θ0, θ1) = 1− 2µ.

Uniform prior. When at least one of ηe, ηs is uniformly distributed, the conditional prior

π(θ1|θ0) reduces to a simple expression in terms of the CDF of the beta distribution, which

we derive in Appendix A. In particular, with a flat prior (θ0, ηe, ηs) ∼ Uniform(0,1)3, the

marginal on θ1 is π(θ1) = −2θ1 log θ1 − 2(1− θ1) log(1− θ1).

Monotonicity. Under the “no harm” monotonicity assumption, ηs = 0, we have θ1 =

(1 − ηe)θ0, in which case θ1 is a product of independent beta random variables a priori.

Springer and Thompson (1970) derived the form of this distribution, with the density

given as a Meijer G-function. In particular, if ne = µ0n0, we can show that θ1 ∼ Beta((1−
µe)ne, µene+(1−µ0)n0). For another example, if (θ0, ηe) ∼ Uniform(0, 1)2, we have π(θ1) =

− log θ1. Regarding the conditional prior π(θ1|θ0) under the “no harm” assumption, it is

clearly a scaled beta distribution, since θ1 = (1 − ηe)θ0. If ηe ∼ Uniform(0, 1), we have

θ1|θ0 ∼ Uniform(0, θ0). Similarly, under the “no benefit” assumption ηe = 0, we have that

θ1 = θ0 + ηs(1− θ0), which is a scaled and shifted beta random variable conditional on θ0.

If ηs ∼ Uniform(0, 1), then θ1|θ0 ∼ Uniform(θ0, 1).

Moments. The joint density π(θ0, θ1) induced by the BREASE(µ;n) prior is generally

complicated, but its moments are easily computed in terms of the hyperparameters (µ, n)

as θ1 is a polynomial in (θ0, ηe, ηs), which are beta distributed a priori. For example, the

prior covariance has a simple form, Cov(θ0, θ1) =
µ0(1−µ0)
n0+1

(1 − µe − µs). This implies the

following directions of the prior correlation,

Cor(θ0, θ1)


< 0, µe + µs > 1,
= 0, µe + µs = 1,
> 0, µe + µs < 1.

(3.8)

In words, θ0 and θ1 are positively correlated a priori when the expected harm and benefit

of treatment are small, and negatively correlated otherwise.
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Default prior. While we encourage the use of informative priors, it is useful to have

reasonable defaults to start the analysis. If we would like to put θ0 and θ1 on equal footing,

the BREASE(1/2, µ, µ; 2, 1, 1) is thus the natural choice, with the following properties: (i)

puts flat uniform priors on θ0 and θ1 (as with the IB approach); (ii) induces prior correla-

tion between parameters (as with the LT approach); (iii) assumes no effect of treatment,

on average (as with the IB and LT approaches); and, (iv) depends on a single, easily in-

terpretable parameter µ denoting the expected benefits (efficacy) or harm (side effects) of

the treatment. When µ > 1/2, θ1 and θ0 become anti-correlated, and thus for most cases,

µ ≤ 1/2 is a reasonable choice. Our preferred specification uses µ = 0.3 as the default. As

Figure 6 in the appendix shows, this (weakly) encodes the expectation of moderate effects

and concentrates mass on the diagonal θ0 = θ1. This quality is useful in the context of

Bayesian hypothesis testing. When testing a null hypothesis H0 (e.g., no effect of treatment

on average, H0 : θ0 = θ1) nested within an alternative H1, it is desirable for the prior under

H1 to concentrate mass around the null model (Jeffreys, 1961; Gunel and Dickey, 1974;

Casella and Moreno, 2009).

3.3 Posterior sampling

The posterior under (3.5) is given by the following mixture of independent betas12

π(θ0, ηe, ηs|D) ∝
y1∑
j=0

N1−y1∑
k=0

(
y1
j

)(
N1 − y1

k

)
× θy0+j+k+µ0n0

0 (1− θ0)
N−(y0+j+k)+(1−µ0)n0

× ηηe;k+µene
e (1− ηe)

j+(1−µe)ne

× ηy1−j+µsns
s (1− ηs)

N1−y1−k+(1−µs)ns . (3.9)

As with the prior, this posterior falls into the family of generalized Dirichlet distributions

on the vector of potential outcomes probabilities p. While some posterior quantities can

be obtained analytically (see Appendix D), working with the posterior density can often

be cumbersome; thus, we now describe how to sample exactly from the posterior via sim-

ulation.13

Theorem 2. Let (θ0, ηe, ηs) be random variables drawn according to Algorithm 1. Then

(θ0, ηe, ηs) are distributed according to the BREASE posterior (3.9).

Sketch of proof. Let I0 = {1, . . . , N0}, I1 = {N0 + 1, . . . , N0 + N1} denote the indices of

12Here Beta(x; a, b) denotes the density of the Beta(a, b) distribution evaluated at x ∈ [0, 1].
13See Appendix C.1 for a full derivation of Theorem 2.
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Algorithm 1 BREASE posterior sampling algorithm

Input: Data D = (y0, y1, N0, N1), hyperparameters (µ0, µe, µs, n0, ne, ns), and desired
number of posterior samples T .
Iterate: For sample t ∈ {1, . . . , T},
(i) Sample x1(1) ∈ {0, . . . , N1 − y1} conditional on D with probability, according to

(3.11),

π(x1(1)|D) =

y1∑
y1(0)=0

π(y1(0), x1(1)|D).

(ii) Sample y1(0) ∈ {0, . . . , y1} conditional on (x1(1),D) with probability, according to
(3.11),

π(y1(0)|x1(1),D) ∝ π(y1(0), x1(1)|D).

(iii) Sample (θ0, ηe, ηs) conditional on (y1(0), x1(1),D) from the distribution (3.12).

Output: Posterior samples {(θ(t)0 , η
(t)
e , η

(t)
s )}t∈{1,...,T}.

subjects in the control and treatment groups, respectively. For j, k ∈ {0, 1}, we define the

counterfactual counts

yj(k) =
∑
i∈Ij

I(Yi(j) = 1, Yi(1− j) = k), xj(k) =
∑
i∈Ij

I(Yi(j) = 0, Yi(1− j) = k),

which are unobserved quantities. For example, y1(0) is the number of subjects in the

treatment group who died but would not have if untreated. Similarly, x1(1) is the number

of subjects in the treatment group who did not die but would have if untreated. The

BREASE posterior can then be expressed as a mixture distribution:

π(θ0, ηe, ηs|D) =

y1∑
y1(0)=0

N1−y1∑
x1(1)=0

π(θ0, ηe, ηs|y1(0), x1(1),D)× π(y1(0), x1(1)|D). (3.10)

Hence, we can sample from the posterior by first drawing from the distribution of un-

observed counts (y1(0), x1(1)) conditional on the observed data D. This distribution has

probability mass function

π(y1(0), x1(1)|D) ∝
(

y1
y1(0)

)(
N1 − y1
x1(1)

)
B(x1(1) + µene, y1 − y1(0) + (1− µe)ne)

× B(y0 + y1 − y1(0) + x1(1) + µ0n0, N − (y0 + y1 − y1(0) + x1(1)) + (1− µ0)n0)

× B(y1(0) + µsns, N1 − y1 − x1(1) + (1− µs)ns). (3.11)

We then sample the parameters (θ0, ηe, ηs), which have an independent beta distribution
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Figure 2: Pathological MCMC posterior sampling exhibited in posterior histograms of the
baseline risk θ0 (left) and treatment risk θ1 (right). The marginal posterior of θ1 (black
curve) was approximated using numerical integration.

conditional on the augmented data (y1(0), x1(1),D):

π(θ0, ηe, ηs|y1(0), x1(1),D) = Beta(ηe;x1(1) + µene, y1 − y1(0) + (1− µe)ne)

× Beta(θ0; y0 + y1 − y1(0) + x1(1) + µ0n0, N − (y0 + y1 − y1(0) + x1(1)) + (1− µ0)n0)

× Beta(ηs; y1(0) + µsns, N1 − y1 − x1(1) + (1− µs)ns). (3.12)

Note this provides a counterfactual interpretation of the mixture weights resulting from

the normalization of the kernels in (3.9).

To demonstrate the utility of exact posterior simulation, we now turn to an example for

which RJAGS (Plummer, 2023) and RStan (Stan Development Team, 2023), two popular

MCMC software packages, fail to sample from the BREASE posterior. We use the data

y0 = 20, N0 = 1000, y1 = 40, N1 = 1000, and the hyperparameters µ0 = 0.5,

n0 = 2, µe = 0.5, ne = 2, µs = 0.01, ns = 1. The prior distributions for θ0 and

ηe are vague independent Uniform(0, 1) distributions. On the other hand, the prior on the

risk of side effects ηs is concentrated near 0 with mean µs = 0.01. This prior encodes a

quasi-monotonicity assumption on the treatment that is clearly in conflict with the data.

Prior-data conflict, which arises when the prior is concentrated on parameter values

that are unlikely given the data, is a common culprit when diagnosing pathological MCMC

sampling (Evans and Moshonov, 2006). This example is no exception. Figure 2 shows

histograms of 100,000 posterior samples of θ0 and θ1 drawn using Algorithm 1 (grey), JAGS

(blue), and Stan (red). The marginal posterior density is plotted in black for reference.
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The posterior of θ0 is a mixture of beta distributions and its multimodality is exhibited in

the left panel of Figure 2. While Algorithm 1 produces exact posterior samples that fully

capture the distribution, JAGS and Stan fail to adequately explore the left-hand mode.

Although Stan manages to deviate from the right-hand mode as compared to JAGS, its

chains get stuck at θ0 ≈ 0.024 and θ0 ≈ 0.033 when the sampler rejects numerous proposal

draws. The story is much the same for θ1.

Monotonicity. Posterior sampling under monotonicity constraints, such as setting ηs = 0

or ηe = 0, can be obtained with similar procedures, and we thus defer their discussion to

the appendix. See Theorems 4-5 of Appendix C.

3.4 Marginal likelihoods and Bayes factors

From a Bayesian perspective, hypothesis testing is essentially a model comparison exercise

(Jeffreys, 1961; Dickey and Lientz, 1970; Kass and Raftery, 1995). Consider two competing

hypothesis, H0 and H1. For each hypothesis Hk, k ∈ {0, 1}, the Bayesian approach requires

postulating a fully specified model Mk, with likelihood Lk(D|θ) and prior πk(θ), respecting

the constraints of the hypothesis the model is intended to represent. Evidence in favor of

H1 relative to H0 is then quantified using the Bayes factor BF10, given by the ratio of the

marginal likelihoods of the observed data under each model, BF10 = L1(D)/L0(D), where

Lk(D) =
∫
Lk(D|θ)πk(θ)dθ. Given prior model probabilities P(M0), P(M1), the posterior

odds ofM1 andM0 are then P(M1|D)/P(M0|D) = BF10×P(M1)/P(M0). In this section we

show how to formulate such models instantiating a number of relevant statistical hypotheses

with the BREASE approach, and provide analytical formulae for the marginal likelihoods.

For all models considered here the likelihood is the same, so we focus the discussion on the

formulation of the prior.

Let us first consider testing the null hypothesis H0 : θ1 = θ0 against the alternative

hypothesis H1 : θ1 ̸= θ0. For H1, we propose using the unconstrained model M1, with the

BREASE prior in (3.5) and equation (3.3),

M1 : (θ0, ηe, ηs) ∼ BREASE(µ;n), θ1 = (1− ηe)θ0 + ηs(1− θ0). (3.13)

As for the null hypothesis H0 : θ1 = θ0, we instantiate it with the null model,

M0 : θ0 ∼ Beta∗(µ0, n0), θ1 = θ0. (3.14)
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One benefit of M0 is that its prior is logically consistent with the marginal distribution of

θ0 underM1, both implying θ0 ∼ Beta∗(µ0, n0) a priori. Note that the prior (3.14) emerges

naturally from M1 in at least two ways: (i) when postulating that the treatment does not

work at all, by setting ηs = ηs = 0; or, (ii) by noting that, if the treatment has no effect on

average (i.e, the efficacy of the treatment precisely offsets its side effects), one can side-step

thinking about ηs and ηe altogether. In both cases, we borrow the prior of θ0 from M1, and

simply set θ1 equal to θ0. We discuss alternative prior formulations for H0 in Appendix E.1.

Other relevant hypothesis one may wish to test are that the treatment is beneficial

H− : θ1 < θ0 or that the treatment is harmful H+ : θ1 > θ0, on average. A straightforward

approach to specify models for such hypotheses is to note that M1 already induces positive

probabilities to the events postulated in H− and H+. Thus, we can borrow this knowledge,

already elicited when forming M1, to define the priors π− and π+,

π−(θ0, ηe, ηs) := π1(θ0, ηe, ηs|θ1 < θ0), π+(θ0, ηe, ηs) := π1(θ0, ηe, ηs|θ1 > θ0). (3.15)

The priors π− and π+ result in the models M− and M+, for H− and H+ respectively.

Similarly to M0, one benefit of these models is that the induced priors on (θ0, ηe, ηs) are

logically consistent with the beliefs expressed in M1, under the constraints H− and H+.

Note that the same strategy employed here can be used for interval hypotheses of the

type Hδ
0 : |θ1 − θ0| ≤ δ, with δ > 0 (or, more generally, for any event with nonzero

probability underM1). Alternative models forH− andH+, leveraging instead monotonicity

constraints, such as ηs = 0 or ηe = 0, are discussed in Appendix E.2.

In all cases above, the marginal likelihood can be obtained using analytical formulae and

simple Monte Carlo approximation, thereby facilitating the computation of Bayes factors.

Theorem 3. The marginal likelihood of the data under M0 is given by a beta-binomial

distribution. Under M1, it is given by a weighted sum of beta functions:14

L1(D) =

(
N0

y0

)(
N1

y1

) y1∑
j=0

N1−y1∑
k=0

(
y1
j

)(
N1 − y1

k

)
× B(k + µene, j + (1− µe)ne)

B(µene, (1− µe)ne)

× B(y0 + j + k + µ0n0, N − (y0 + j + k) + (1− µ0)n0)

B(µ0n0, (1− µ0)n0)

× B(y1 − j + µsns, N1 − y1 − k + (1− µs)ns)

B(µsns, (1− µs)ns)
. (3.16)

14Here B(a, b) denotes the beta function evaluated at (a, b).

18



Under M− and M+, it can be obtained from L1(D) as follows,

L−(D) = L1(D)× π1(θ1 < θ0|D)

π1(θ1 < θ0)
, L+(D) = L1(D)× π1(θ1 > θ0|D)

π1(θ1 > θ0)
. (3.17)

Proof. The result for M0 is well-known. L1(D) in (3.16) follows directly from integration

of (3.4) under the prior (3.5). L−(D) and L+(D) in (3.17) follow from Bayes’ rule.

Remark 1. The prior and posterior probabilities π1(θ1 < θ0) and π1(θ1 < θ0|D) can be

approximated using Monte Carlo integration with exact samples, as per Section 3.3.

Remark 2. As per (3.17), if one postulates prior model probabilities P(M−|M1) = π1(θ1 <

θ0) and P(M+|M1) = π1(θ1 > θ0), the Bayes factor testing H0 : θ1 = θ0 against H1 : θ1 ̸= θ0

(using M1) conveniently decomposes into the weighted average of the Bayes factors testing

H0 against H− (using M−) and H0 against H+ (using M+)—though, of course, users can

postulate prior probabilities for the models M− and M+ as they wish.

As noted by Campbell and Gustafson (2022), if one reports a Bayes factor compar-

ing models, it is advisable to also report posterior estimates accounting for model un-

certainty, i.e., using the implied mixture prior given by the weighted combination of the

priors of all models being compared, π(θ) =
∑

k P(Mk)πk(θ). In this case, samples from

the mixture posterior can be readily obtained by sampling from the posterior of each

model (as detailed in Section 3.3) proportionally to each model’s posterior probability,

π(θ|D) =
∑

k P(Mk|D)πk(θ|D).

4 Empirical Examples

We now demonstrate the utility of our approach in three empirical examples. We show how

the BREASE framework can be used to facilitate Bayesian estimation, hypothesis testing,

and sensitivity analysis of the results of binary experiments. Concretely, the examples

illustrate how our proposal can: (i) help analysts distinguish robust from fragile findings;

(ii) clarify what one needs to believe in order to claim that a treatment is effective; and

(iii) reconcile disparate results obtained from different methods.

4.1 The effect of aspirin on myocardial infarction

We revisit the aspirin component of the Physicians’ Health Study, a large-scale randomized,

placebo-controlled trial designed, in part, to investigate whether low-dose aspirin decreases
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the risk of cardiovascular mortality (Physicians’ Health Study Research Group, 1989). Dur-

ing the study, y0 = 26 out of N0 = 11,034 subjects in the placebo group experienced fatal

myocardial infarction compared to y1 = 10 out of N1 = 11,037 prescribed aspirin. Using

maximum likelihood estimation, the estimated risk ratio θ1/θ0 is 0.38, with 95% confidence

interval (based on inverting Fisher’s exact test) CI(95%) = [0.17, 0.82]. Consequently, we

reject the null hypothesis of zero effect, H0 : θ1 = θ0, with p-value 0.008. Results based

on asymptotic Wald and Pearson tests are nearly identical. Hence, a frequentist would

confidently conclude that low-dose aspirin significantly reduces cardiovascular mortality.

Traditional Bayesian estimation under the alternative hypothesis (i.e, with a prior that

gives zero probability to the null hypothesis of zero effect) yields qualitatively similar,

though more conservative, answers. Using our default prior, BREASE(1/2, .3, .3; 2, 1, 1),

the posterior median of the risk ratio is 0.44 with a wider 95% credible interval of CrI(95%) =

[0.2, 0.96]. The results for the LT and IB approach are similar.15

Traditional estimation, however, does not give the null hypothesis of zero effect a fighting

chance, as it is assumed to be false a priori. One may thus be interested in performing a

Bayesian hypothesis test assigning nonzero prior probability to H0.
16 Perhaps surprisingly,

a test based on the IB approach yields a Bayes factor BF01 = 20.27, suggesting that the

data provide strong evidence in favor of H0. On the other hand, the Bayes factor under the

LT approach is BF10 = 5.24, which suggests moderate evidence in favor of H1 : θ1 ̸= θ0.
17

Finally, the default BREASE prior results in BF10 = 1.2 providing essentially little evidence

in favor of one hypothesis or the other. How can we make sense of these disparate results?

As is well known, Bayes factors are sensitive to the prior distribution (Kass and Raftery,

1995). It is important, then, that prior assumptions are encoded in a way that practitioners

can understand, both to examine the reasonableness of the prior, as well as to explore how

robust inferences are to sensible perturbations of the prior (Leamer, 1978; Gunel, 1984;

Kass and Raftery, 1995).

One benefit of the BREASE approach is that it allows one to clearly encode prior

assumptions in terms of the expected efficacy and side effects of aspirin, and to examine

how sensitive the BF is to those assumptions. For example, aspirin is an over-the-counter

medicine, with ample usage, and it would thus be unreasonable to expect that aspirin would

cause myocardial infarction in a large fraction of otherwise healthy patients. Figure 3a

15LT(0,0;1,1): median = 0.48 and CrI(95%) = [0.25, 0.87]. IB(1,1;1,1): median = 0.4 and CrI(95%) =
[0.18, 0.79].

16Here we focus on the exact null, but we note that researchers can also specify an interval null hypothesis,
such as |θ1 − θ0| < δ, as per discussion of Section 3.4.

17See Appendix F for details on the calculation of Bayes factors for the IB and LT approaches.
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Figure 3: Sensitivity analysis of BF10 for the aspirin trial.

inspects how the Bayes factor is affected as we vary the prior expectation of side effects,

ranging from 0.01% to 50%, while still keeping relatively vague priors on the baseline risk

and efficacy. The dashed red, orange, and blue lines denote (slightly modified) Jeffreys’

thresholds for weak (1 ≤ BF10 ≤ 3), moderate (3 ≤ BF10 ≤ 10), and strong (BF10 ≥ 10)

evidence against H0, respectively (Jeffreys, 1961; Kass and Raftery, 1995). Indeed, as the

plot shows, the results are extremely sensitive to the choice of µs. Setting the expected

value of side effects to 1% results in BF10 = 13.45, yielding strong evidence in favor of

H1, while setting it to 50% results in BF01 = 2.66, yielding weak evidence in favor of

H0. Translating these to posterior probabilities, we have the wide range of 27% to 93%

probability of the existence of an effect (assuming equal prior odds for H0 and H1).

One may also want to conduct a sensitivity analysis with respect to both hyperparame-

ters simultaneously for the BREASE(1/2, µe, µs; 2, 1, 1) prior. Figure 3b shows the contour

lines of BF10 as a function of (µe, µs) ∈ (0, 1)2 over their full range of possible values, while

keeping ne = ns = 1 fixed. In general, the results seem more sensitive to plausible variations

of the expected risk of side effects µs than to plausible variations of the expected efficacy

µe of aspirin. Overall, only when (i) side effects are expected to be small (< 1%), and

(ii) the efficacy is expected to be relatively large (between 30% and 70%), does the Bayes

factor provide strong evidence against the null of no effect. For all other combinations of

prior hyperparameters, the evidence is either moderate, weak, or favors the null. In this

light, the results of the trial are ambiguous, and the conclusion that aspirin prevents heart

21



attack strongly depends on the prior. Note that this need not always be the case, as we

show next in a reanalysis of the Pfizer-BioNTech COVID-19 vaccine trial.

4.2 The Pfizer-BioNTech COVID-19 vaccine trial

We now reexamine the results of the Pfizer-BioNTech mRNA COVID-19 vaccine study (Po-

lack et al., 2020). The experiment was a global multi-phase randomized placebo-controlled

trial designed, in part, to evaluate the efficacy of the BNT162b2 vaccine candidate in

preventing COVID-19. Vaccine development and evaluation were carried out in rapid re-

sponse to the emerging SARS-CoV-2 pandemic. The results of the trial were definitive

and precipitated the U.S. Food and Drug Administration’s emergency use authorization

for widespread dissemination of the vaccine (U.S. Food and Drug Administration, 2020).

During the study, y1 = 9 out of N1 = 19,965 subjects contracted COVID-19 subsequent

to the second dose of the vaccine, while there were y0 = 169 cases out of N0 = 20,172

subjects receiving placebo injections. In their paper, Polack et al. adopted a Bayesian

approach, focusing particularly on evaluating the vaccine’s efficacy (defined in the study as

the estimand 1 − θ1/θ0). The efficacy of the vaccine was estimated at 0.95, with credible

interval CrI(95%) = [0.90, 0.97]. Frequentist estimates are similar, with a point estimate of

0.95, confidence interval CI(95%) = [0.90, 0.97], and a p-value for testing the null hypothesis

of zero effect of the order 6× 10−33.

Polack et al. (2020) estimate 1 − θ1/θ0 as the efficacy of the vaccine, but, as per Sec-

tion 3.1.2, this only has the counterfactual interpretation of efficacy (i.e., ηe = 1 − θ1/θ0)

under the assumption of monotonicity. Using the BREASE approach we can easily encode

the monotonicity assumption by setting ηs = 0 and then proceed with estimation. The

default BREASE prior, with the monotonicity constraint, results in posterior median and

95% credible interval for ηe = 1−θ1/θ0 that are essentially the same as the previous results,

namely, 0.94 and CrI(95%) = [0.90, 0.97]. In the absence of the monotonicity assumption,

we have that 1 − θ1/θ0 is in fact a lower bound on ηe. Again using the default BREASE

prior, results are virtually unchanged, with posterior median and 95% credible interval for

1 − θ1/θ0 of 0.94 and CrI(95%) = [0.90, 0.97].18 Conclusions using the IB and LT priors

are practically equivalent.19

Turning to hypothesis testing, differently from the aspirin study, here all approaches

18Corresponding values for ηe are 0.96 and CrI(95%) = [0.90, 0.99]. In this case, however, since ηe is
not identified, the posterior of ηe is sensitive to the prior, and it remains spread in the partially identified
region of ηe regardless of sample size.

19LT(0,0;1,1): med = 0.91, CrI(95%) = [0.86, 0.95]. IB(1,1;1,1): med = 0.94, CrI(95%) = [0.90, 0.97].
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Figure 4: Sensitivity analysis of BF10 for the COVID-19 vaccine trial.

point to the same direction, with overwhelming evidence against H0. The Bayes factors

against the null hypothesis of zero effect are 9× 1033, 5× 1034 and 4× 1035 for the IB, LT

and BREASE default priors, respectively. Further, sensitivity analyses reveal the Bayes

factor is in fact robust to variations in the hyperparameters across the whole range of prior

expected efficacy and side effects of the vaccine, i.e., (µe, µs) ∈ (0, 1)2. Figure 4 replicates

the same sensitivity plots of the aspirin study for the COVID-19 trial. Notice that, in

all scenarios, the posterior probability of the null hypothesis is essentially zero even if we

posit equal prior odds for H0 and H1. Therefore, in this case, credible intervals constructed

under H1, neglecting H0, are identical to credible intervals constructed using the mixture

prior assigning a point mass of 0.5 to H0. The trial provides unequivocal evidence that the

vaccine is highly efficacious.

4.3 Null results in the New England Journal of Medicine

Dablander et al. (2022) conducted a Bayesian reanalysis of 39 binary experiments reporting

null results (claiming absence or nonsignificance of an effect of treatment) in the New Eng-

land Journal of Medicine (NEJM). They were particularly concerned with distinguishing

between absence of evidence and evidence of absence of an effect when outcomes in the

treatment and control groups are similar. Finding that Bayes factors calculated using the

IB approach often strongly favored the null hypothesis (leaning heavily toward evidence of
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Figure 5: Comparisons of log marginal likelihoods and Bayes factors across 39 NEJM
studies, for the IB, LT and BREASE priors.

absence) whereas LT Bayes factors were generally equivocal, Dablander et al. concluded

that the LT approach should be preferred for Bayesian tests for an equality of proportions.

In our final empirical example, we expand their reanalysis to include the BREASE ap-

proach, and we show how it can easily address the concerns of Dablander et al. while also

providing a better fit to the data in most cases.

Figure 5a contrasts the Bayes factors in favor of the null hypothesis using: (i) the

IB(a, a; a, a) prior varying a ∈ [1, 5] (red diamonds); (ii) the LT(0, 0; 1, σψ) prior varying

σψ ∈ [1, 2] (blue circles); and, the BREASE(1/2, µ, µ; 2, 1, 1) prior varying µ ∈ [.2, .7]

(green triangles). The solid color stands for the proposed default values of each method,

namely a = 1 for the IB, σψ = 1 for the LT and µ = .3 for the BREASE. Note that the

Bayes factors of the BREASE and LT default priors (solid triangle and circles) are similar

across studies. Moreover, Dablander et al. (2022) noted that, in many examples, the Bayes

factors of the IB and LT approaches could not be easily reconciled, even when reasonably

varying their hyperparameters. The BREASE approach shows that this behavior is a

mere artifact of those parameterizations. Indeed, for all studies, the BREASE prior easily

interpolates between the two regimes, thus solving the apparent contradiction between the

results of the LT and IB approaches, by transparently revealing how sensitive inferences

are to the prior expected efficacy and side effects of the treatment µ. Finally, Figure 5b

compares the predictive performance of the default IB, LT, and BREASE priors via the

log marginal likelihood. The BREASE prior exhibits superior performance in every study
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when compared to the IB prior, and in more than 74% of the studies when compared to

the LT prior.20 Thus, in this setting, our proposed default prior seems to provide not only

a more sensible parameterization, but also a better fit to the data.

5 Conclusion

We have introduced the BREASE framework for the Bayesian analysis of randomized con-

trolled trials with a binary treatment and outcome. Framing the problem in the language

of potential outcomes, we reparameterized the likelihood in terms of clinically meaningful

quantities—the baseline risk, efficacy, and risk of adverse side effects of the treatment—and

proposed a simple, yet flexible jointly independent beta prior distribution on these param-

eters. We provided algorithms for exact posterior sampling, as well as analytical formulae

for marginal likelihoods, Bayes factors, and other quantities. Finally, we showed with em-

pirical examples how our proposal facilitates estimation, hypothesis testing, elicitation of

prior knowledge and sensitivity analysis of treatment effects in binary experiments.

Many interesting extensions of this framework are possible. One possibility is to extend

the method to pool evidence across multiple trials. The problem of aggregating evidence

is important in its own right, and data from multiple sites may also allow to point identify,

or at least narrow the bounds on the fraction of people who benefit or are harmed by the

intervention. In a similar vein, another possibility is to extend our framework to the analysis

of crossover trials. Under certain assumptions of temporal homogeneity, the efficacy and

side effects may be identifiable, making our parameterization and prior proposal natural

candidates to the study of treatment effects in such designs.
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Casella, George and Eĺıas Moreno (2009). “Assessing Robustness of Intrinsic Tests of In-

dependence in Two-Way Contingency Tables”. In: Journal of the American Statistical

Association 104.487, pp. 1261–1271.

Chickering, David M. and Judea Pearl (1996). “A Clinician’s Tool for Analyzing Non-

compliance”. In: Proceedings of the AAAI Conference on Artificial Intelligence, 13.

Cinelli, Carlos and Judea Pearl (2021). “Generalizing experimental results by leveraging

knowledge of mechanisms”. In: European Journal of Epidemiology 36, pp. 149–164.

Copas, J. B. (1973). “Randomization models for the Matched and Unmatched 2 × 2 Ta-

bles”. In: Biometrika 60.3, pp. 467–476. issn: 00063444. url: http://www.jstor.org/

stable/2334995 (visited on 10/24/2023).

26

http://www.jstor.org/stable/2334995
http://www.jstor.org/stable/2334995


Dablander, Fabian et al. (2022). “A puzzle of proportions: Two popular Bayesian tests can

yield dramatically different conclusions”. In: Statistics in Medicine 41.8, pp. 1319–1333.

Davies, H.T., I.K. Crombie, and M. Tavakoli (1998). “When can odds ratios mislead?” In:

BMJ 316.7136, pp. 989–991.

Dickey, J. M., J. M. Jiang, and J. B. Kadane (1987). “Bayesian methods for censored

categorical data”. In: Journal of the American Statistical Association 82, pp. 773–781.

Dickey, James M. (1983). “Multiple Hypergeometric Functions: Probabilistic Interpreta-

tions and Statistical Uses”. In: Journal of the American Statistical Association 78.383,

pp. 628–637.

Dickey, James M. and B. P. Lientz (1970). “The Weighted Likelihood Ratio, Sharp Hy-

potheses about Chances, the Order of a Markov Chain”. In: The Annals of Mathematical

Statistics 41.1, pp. 214–226.

Ding, Peng and Luke W. Miratrix (2019). “Model-free causal inference of binary experi-

mental data”. In: Scandinavian Journal of Statistics 46.1, pp. 200–214.

Evans, Michael and Hadas Moshonov (2006). “Checking for Prior-Data Conflict”. In: Bayesian

Analysis 1.4, pp. 893–914.

Gelman, Andrew et al. (1995). Bayesian data analysis. Chapman and Hall/CRC.

Greenland, Sander and James Robins (1986). “Identifiability, Exchangeability, and Epi-

demiological Confounding”. In: International Journal of Epidemiology 15.3, pp. 413–

419.

Gronau, Quentin F., K. N. Akash Raj, and Eric-Jan Wagenmakers (2021). “Informed

Bayesian Inference for the A/B Test”. In: Journal of Statistical Software 100.17, pp. 1–

39.

Gunel, E. (1984). “A Bayesian analysis of the multinomial model for a dichotomous response

with nonrespondents”. In: Comm. Statist. Theory Methods 13, pp. 737–751.

Gunel, Erdogan and James Dickey (1974). “Bayes Factors for Independence in Contingency

Tables”. In: Biometrika 61.3, pp. 545–557.

Gustafson, Paul (2015). Bayesian inference for partially identified models: Exploring the

limits of limited data. Vol. 140. CRC Press.

Hirano, Keisuke et al. (2000). “Assessing the effect of an influenza vaccine in an encour-

agement design”. In: Biostatistics 1.1, pp. 69–88.

Imbens, Guido W. and Donald B. Rubin (1997). “Bayesian Inference for Causal Effects

in Randomized Experiments with Noncompliance”. In: The Annals of Statistics 25.1,

pp. 305–327.

27



Jeffreys, Harold (1935). “Some Tests of Significance, Treated by the Theory of Probability”.

In: Mathematical Proceedings of the Cambridge Philosophical Society 31.2, pp. 203–222.

— (1961). Theory of Probability. 3rd. Oxford, UK: Oxford University Press.

Karson, M.J. and W.J. Wrobleski (1970). “A Bayesian Analysis of a Binomial Model with a

Partially Informative Category”. In: Proceedings of the Business and Economic Statis-

tics Section, American Statistical Association, pp. 532–534.

Kass, Robert E. and Adrian E. Raftery (1995). “Bayes Factors”. In: Journal of the American

Statistical Association 90.430, pp. 773–795.

Kass, Robert E. and Suresh K. Vaidyanathan (1992). “Approximate Bayes Factors and

Orthogonal Parameters, with Application to Testing Equality of Two Binomial Pro-

portions”. In: Journal of the Royal Statistical Society. Series B (Methodological) 54.1,

pp. 129–144.

Kass, Robert E. and Larry Wasserman (1995). “A Reference Bayesian Test for Nested

Hypotheses and its Relationship to the Schwarz Criterion”. In: Journal of the American

Statistical Association 90.431, pp. 928–934.

Kaufman, G. M. and Benjamin King (1973). “A Bayesian Analysis of Nonresponse in

Dichotomous Processes”. In: Journal of the American Statistical Association 68.343,

pp. 670–678.

Killion, Ruth A. and Douglas A. Zahn (1976). “A Bibliography of Contingency Table

Literature: 1900 to 1974”. In: International Statistical Review 44.1, pp. 71–112.

Kruschke, John (2014). Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and

Stan. Elsevier Science & Technology.
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Appendix for

“Causally Sound Priors for Binary Experiments”

Nicholas J. Irons & Carlos Cinelli

A Implied prior on θ1

Let the prior of (θ0, ηe, ηs) consist of independent beta distributions with PDFs denoted by

θ0 ∼ πθ0(θ0), ηs ∼ πs(ηs), and ηe ∼ πe(ηe). By the law of total probability, the conditional

distribution of θ1 given θ0 can be written as

π(θ1 | θ0) =
∫ 1

0

π(θ1 | θ0, ηe)πe(ηe)dηe, (A.1)

where here we make use of the fact that ηe and θ0 are a priori independent. Note that,

conditional on θ0 and ηe, θ1 is simply a linear transformation of ηs, namely θ1 = θ0(1 −
ηe) + (1− θ0)ηs. We can thus write the density of θ1 in terms of the density of ηs as

π(θ1 | θ0, ηe) =
(

1

1− θ0

)
πs

(
θ1 − θ0(1− ηe)

1− θ0

)
,

where we make use of the fact that
dηs
dθ1

=
1

1− θ0
. Substituting this back into Eq. A.1, we

have the following integral

π(θ1 | θ0) =
(

1

1− θ0

)∫ 1

0

πs

(
θ1 − θ0(1− ηe)

1− θ0

)
πe(ηe)dηe. (A.2)

For the special case where ηe is uniformly distributed, πe(ηe) = 1, the integral simplifies,

π(θ1 | θ0) =
(

1

1− θ0

)∫ 1

0

πs

(
θ1 − θ0(1− ηe)

1− θ0

)
dηe (A.3)

=

(
1

θ0

)∫ θ1
1−θ0

θ1−θ0
1−θ0

πs (ηs) dηs (A.4)

=

(
1

θ0

)(
Fs

(
θ1

1− θ0

)
− Fs

(
θ1 − θ0
1− θ0

))
, (A.5)

where the second equality follows from change of variables, noting dηe = (1 − θ0)/θ0dηs.

Here Fs(·) denotes the CDF of the beta distribution, which is given by the the regularized

incomplete beta function.

For special cases the expression above simplifies. For instance, when ηs is also uniformly

1



distributed, we have that Fs(x) = x, and we obtain a simple closed form expression for the

conditional density. Specifically, for θ0 ≤ 1/2,

π(θ1 | θ0) =



θ1
θ0(1− θ0)

if 0 ≤ θ1 < θ0,

1

1− θ0
if θ0 ≤ θ1 < 1− θ0,

1− θ1
θ0(1− θ0)

if 1− θ0 ≤ θ1 ≤ 1,

(A.6)

and zero, otherwise. Analogously, for θ0 ≥ 1/2,

π(θ1 | θ0) =



θ1
θ0(1− θ0)

if 0 ≤ θ1 < 1− θ0,

1

θ0
if 1− θ0 ≤ θ1 < θ0,

1− θ1
θ0(1− θ0)

if θ0 ≤ θ1 ≤ 1,

(A.7)

and zero, otherwise. Notice this is a piece-wise linear function of θ1. Remarkably, however,

integrating each region over θ0 results in the following marginal distribution of π(θ1),

π(θ1) = 2(−θ1 log θ1 − (1− θ1) log(1− θ1)),

for θ1 ∈ [0, 1], and zero otherwise, which is twice the entropy of the Bernoulli(θ1) distribu-

tion.

More generally, the distribution of linear combinations of beta random variables was

studied in Pham-Gia and Turkkan (1998) and is given in terms of Appell’s first hypergeo-

metric function F1, which is an infinite series in two variables:

F1(x, y; a; b1, b2; c) =
∞∑

m1=0

∞∑
m2=0

Γ(a+m1 +m2)Γ(b1 +m1)Γ(b2 +m2)Γ(c)

Γ(a)Γ(b1)Γ(b2)Γ(c+m1 +m2)

xm1

m1!

ym2

m2!
. (A.8)

Appell’s function also has an integral representation given by

F1(x, y; a; b1, b2; c) = B(a, c− a)−1

∫ 1

0

ua−1(1− u)c−a−1(1− ux)−b1(1− uy)−b2du. (A.9)

Applying the results of Pham-Gia and Turkkan (1998) to our setup, the prior on θ1 con-

ditional on θ0 induced by the BREASE prior can be obtained as the following piecewise

function: (i) for θ0 ≤ 1/2, we have
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π(θ1|θ0) = I(0 ≤ θ1 ≤ θ0)

× θ
(1−µe)ne+µsns−1
1 (θ0 − θ1)

µene−1B(µsns, (1− µe)ne)

θne−1
0 (1− θ0)µsnsB(µsns, (1− µs)ns)B((1− µe)ne, µene)

× F1

(
−θ1

θ0 − θ1
,

θ1
1− θ0

;µsns; 1− µene, 1− (1− µs)ns; (1− µe)ne + µsns

)
+ I(θ0 ≤ θ1 ≤ 1− θ0)

× (θ1 − θ0)
µsns−1(1− θ1)

(1−µs)ns−1

(1− θ0)ns−1B(µsns, (1− µs)ns)

× F1

(
−θ0

θ1 − θ0
,

θ0
1− θ1

;µene; 1− µsns, 1− (1− µs)ns;ne

)
+ I(1− θ0 ≤ θ1 ≤ 1)

× (1− θ1)
µene+(1−µs)ns−1(θ1 − θ0)

µsns−1B(µene, (1− µs)ns)

θµene

0 (1− θ0)ns−1B(µsns, (1− µs)ns)B((1− µe)ne, µene)

× F1

(
1− θ1
θ0

,
θ1 − 1

θ1 − θ0
;µene; 1− (1− µe)ne, 1− µsns;µene + (1− µs)ns

)
.

(A.10)

Similarly, (ii) for θ0 ≥ 1/2, we have

π(θ1|θ0) = I(0 ≤ θ1 ≤ 1− θ0)

× θ
(1−µe)ne+µsns−1
1 (1− θ0 − θ1)

(1−µs)ns−1B((1− µe)ne, µsns)

(1− θ0)ns−1θ
(1−µe)ne

0 B((1− µe)ne, µene)B(µsns, (1− µs)ns)

× F1

(
−θ1

1− θ0 − θ1
,
θ1
θ0
; (1− µe)ne; 1− (1− µs)ns, 1− µene; (1− µe)ne + µsns

)
+ I(1− θ0 ≤ θ1 ≤ θ0)

× (θ1 − (1− θ0))
(1−µe)ne−1(1− θ1)

µene−1

θne−1
0 B((1− µe)ne, µene)

× F1

(
−(1− θ0)

θ1 − (1− θ0)
,
1− θ0
1− θ1

; (1− µs)ns; 1− (1− µe)ne, 1− µene;ns

)
+ I(θ0 ≤ θ1 ≤ 1)

× (1− θ1)
µene+(1−µs)ns−1(θ1 − (1− θ0))

(1−µe)ne−1B((1− µs)ns, µene)

(1− θ0)(1−µs)nsθne−1
0 B((1− µe)ne, µene)B(µsns, (1− µs)ns)

× F1

(
1− θ1
1− θ0

,
θ1 − 1

θ1 − (1− θ0)
; (1− µs)ns; 1− µsns, 1− (1− µe)ne;µene + (1− µs)ns

)
.

(A.11)
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Monotonicity. Under the “no harm” monotonicity assumption ηs = 0 we have θ1 =

(1 − ηe)θ0, in which case θ1 is a product of independent beta random variables a priori.

Springer and Thompson (1970) derived the form of this distribution, with the density given

as a Meijer G-function. In general, this function is expressed as a contour integral in the

complex plane. However, when ae = µene, be = (1− µe)ne, a0 = µ0n0, and b0 = (1− µ0)n0

are integers, the prior on θ1 can be expressed in closed form as

π(θ1) =
Γ(n0)Γ(ne)

Γ(µ0n0)Γ((1− µe)ne)

m∑
k=1

ek−1∑
j=0

Kkjθ
dk−1
1 (− log θ1)

ek−j−1

Γ(ek − j)Γ(j + 1)
,

where {d1, . . . , dm} denote the m different integers occurring with multiplicity {e1, . . . , em},
respectively, among the sets {a0 − 1, . . . , a0 + b0 − 2} and {ae − 1, . . . , ae + be − 2}, and

Kkj =

j∑
r=0

∑
q∈{1,...,m},q ̸=k

(−1)r+1

(
j

r

)
Γ(r + 1)eq
(dq − dk)r+1

.

In particular, if ae+be = a0 (equivalently ne = µ0n0, an implicit assumption of the Dirichlet

prior), we have

θ1 ∼ Beta((1− µe)ne, µene + (1− µ0)n0).

For another example, if (θ0, ηe) ∼ Uniform(0, 1)2, we have

π(θ1) = − log θ1.

Regarding the conditional prior π(θ1|θ0) under the “no harm” assumption, it is clearly a

scaled beta distribution, since θ1 = (1 − ηe)θ0. If ηe ∼ Uniform(0, 1), we then have that

θ1|θ0 ∼ Uniform(0, θ0). Similarly, under the “no benefit” assumption ηe = 0, we have that

θ1 = θ0 + ηs(1− θ0), which is a scaled and shifted beta random variable conditional on θ0.

If ηs ∼ Uniform(0, 1), then θ1|θ0 ∼ Uniform(θ0, 1).

As for the moments, applying the law of total covariance to the terms involving θ1 by
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conditioning on θ0 and making use of equation (3.3), we obtain

Cov(θ0, θ1) =
µ0(1− µ0)

n0 + 1
(1− µe − µs),

Var(θ0) =
µ0(1− µ0)

n0 + 1
,

Var(θ1) =
µ0(1− µ0)

n0 + 1
(1− µe − µs)

2

+
µe(1− µe)

ne + 1

{
µ0(1− µ0)

n0 + 1
+ µ2

0

}
+
µs(1− µs)

ns + 1

{
µ0(1− µ0)

n0 + 1
+ (1− µ0)

2

}
.

This can be used to obtain the prior correlation,

Cor(θ0, θ1) =
Cov(θ0, θ1)√
Var(θ0)Var(θ1)

.

B The generalized Dirichlet distribution on p

Given a vector of probabilities p = (p1, . . . , pk), such that
∑k

i=1 pi = 1, the generalized

Dirichlet distribution (Tian, Ng, and Geng, 2003) is defined as,

π(p) ∝
k∏
i=1

pai−1
i

m∏
j=1

(
k∑
i=1

γijpi

)bj−1

(B.1)

where Γ = (γij) is a k × m known scale matrix. We refer to (B.1) as GD(a, b,Γ). Now

consider the vector of potential outcomes p = (p00, p01, p10, p11). By change of variables

arguments, if (θ0, ηe, ηs) ∼ BREASE(µ;n) as in (3.5), it is easy to show that p has density

π(p) ∝ p
(1−µs)ns−1
00 pµsns−1

01 pµene−1
10 p

(1−µe)ne−1
11 (p00 + p01)

(1−µ0)n0−ns(p10 + p11)
µ0n0−ne , (B.2)

which is a GD(a, b,Γ) distribution with parameters

a = (µsns, (1− µs)ns, µene, (1− µe)ne),

b = ((1− µ0)n0 − ns + 1, µ0n0 − ne + 1, 1, 1),

Γ =


1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

 .
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Figure 6: Heatmaps of the joint density of (θ0, θ1) under the BREASE(1/2, µ, µ;n, n/2, n/2)
prior varying n and µ. Our proposed default prior takes n = 2 and µ = .3. As the plot
shows, this: (i) leads to uniform marginals on θ0 and θ1; (ii) assumes zero treatment
effect on average; (iii) concentrates mass on the diagonal θ0 = θ1; (iv) favors small (or
large) proportions, instead of proportions around the center, which is expected when one
quantifies rare outcomes such as death (proportions would be small) or, its complement,
survival (in which case proportions would be large).
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The prior (B.2) is also a grouped Dirichlet distribution, as defined in Tian, Ng, and Geng

(2003) and Ng, Tang, et al. (2008) (which is a special case of the generalized Dirichlet).

Similarly, the posterior in (3.9) induces the following posterior distribution on the vector p,

π(p|D) ∝ p
(1−µs)ns−1
00 pµsns−1

01 pµene−1
10 p

(1−µe)ne−1
11

× (p00 + p01)
N0−y0+(1−µ0)n0−ns(p10 + p11)

y0+µ0n0−ne

× (p00 + p10)
N1−y1(p01 + p11)

y1 ,

which is again a generalized Dirichlet distribution, GD(a, b′,Γ), with parameters a and Γ

as in the prior, and updated parameter b′ given by

b′ = (N0 + y0 + (1− µ0)n0 − ns + 1, y0 + µ0n0 − ne + 1, N1 − y1 + 1, y1 + 1).

The generalized Dirichlet distribution of Dickey (1983), as well as special cases, such as

the grouped Dirichlet and Dirichlet-beta, have been proposed for the Bayesian analysis of

categorical data and contingency tables with missing observations (Antelman, 1972; Dickey,

Jiang, and Kadane, 1987; Gunel, 1984; Karson and Wrobleski, 1970; Kaufman and King,

1973; Ng, Tang, et al., 2008; Tian, Ng, and Geng, 2003). These studies largely focused on

the derivation of closed-form expressions (when available) and accurate approximations for

posterior moments and predictive probabilities used in estimation and inference. They did

not address the parameterization and interpretation of the generalized Dirichlet in terms

of the baseline risk, efficacy, and side effects; algorithms for exact posterior simulation;

testing for an effect of treatment and sensitivity analysis using analytical formulae; or the

specific application to and prior elicitation for binary experiments.

The Dirichlet as a product of independent betas. To better understand the con-

nection of the BREASE prior with the traditional Dirichlet distribution, it is instructive to

first derive the distribution of (θ0, ηe, ηs) induced by a Dirichlet prior on the response type

probabilities p. The BREASE parameters can be expressed as

θ0 = p10 + p11, ηe =
p10

p10 + p11
, ηs =

p01
p00 + p01

.

Elementary properties of the Dirichlet distribution then imply that these quantities are

mutually independent beta random variables (Ng, Tian, and Tang, 2011)

θ0 ∼ Beta(a10+a11, a00+a01) ⊥⊥ ηe ∼ Beta(a10, a11) ⊥⊥ ηs ∼ Beta(a01, a00). (B.3)

Similarly, since θ1 = p01 + p11, we also have that θ1 ∼ Beta(a01 + a11, a00 + a10) marginally.
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While the Dirichlet density seems like a natural choice for the probability vector p,

the implied distribution on (θ0, ηe, ηs) reveals some implicit assumptions. In particular,

this prior has the peculiar (and potentially undesirable) feature that once we have decided

on the parameters underlying the marginal distribution of the efficacy and side effects of

treatment (ηe, ηs)—which requires specifying (a00, a10, a01, a11)—we have fully determined

the joint prior on (θ0, ηe, ηs). In this sense, the Dirichlet distribution is underparametrized.

This underparameterization becomes clearer with an alternative representation of the

beta distribution, in terms of the prior mean and prior “sample size.” For µ = a/(a + b)

and n = a + b, we write Beta∗(µ, n) to denote a Beta(a, b) distribution, with mean µ and

sample size n. The Dirichlet joint prior on (θ0, ηe, ηs) has then the following alternative

stochastic representation,

θ0 ∼ Beta∗(µ0, n0) ⊥⊥ ηe ∼ Beta∗(µe, µ0n0) ⊥⊥ ηs ∼ Beta∗(µs, (1− µ0)n0), (B.4)

which is equivalent to the BREASE prior imposing a restriction on the choice of prior

sample sizes ne and ns. Marginally, we also have

θ1 ∼ Beta∗ ((1− µe)µ0 + µs(1− µ0), n0) , (B.5)

which mirrors the decomposition (3.3).

C Posterior sampling

C.1 Proof of Theorem 2

We now describe in greater detail how to sample exactly from the BREASE posterior

distribution via simulation.

Proof of Theorem 2. Let I0 = {1, . . . , N0}, I1 = {N0 + 1, . . . , N0 + N1} denote the indices

of subjects in the control and treatment groups, respectively. Define the counterfactual

counts

yj(k) =
∑
i∈Ij

I(Yi(j) = 1, Yi(1− j) = k),

xj(k) =
∑
i∈Ij

I(Yi(j) = 0, Yi(1− j) = k), j, k ∈ {0, 1}.

For example, y1(0) is the number of subjects in the treatment group who died but would

not have if untreated. Similarly, x1(1) is the number of subjects in the treatment group
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who did not die but would have if untreated. The posterior can then be expressed as a

mixture distribution:

π(θ0, ηe, ηs|D) =

y1∑
y1(0)=0

N1−y1∑
x1(1)=0

π(θ0, ηe, ηs|y1(0), x1(1),D)× π(y1(0), x1(1)|D). (C.1)

We will derive each term in the sum. A straightforward calculation shows that

(y0(0), y0(1), x0(0), x0(1))|(θ0, ηe, ηs, N0) ∼

MultinomialN0(θ0ηe, θ0(1− ηe), (1− θ0)(1− ηs), (1− θ0)ηs),

(y1(0), y1(1), x1(0), x1(1))|(θ0, ηe, ηs, N1) ∼

MultinomialN1((1− θ0)ηs, θ0(1− ηe), (1− θ0)(1− ηs), θ0ηe),

and the two distributions are independent. Since

y1 = y1(0) + y1(1) and N1 − y1 = x1(0) + x1(1),

it follows that

y1(0)|(y1, θ0, ηe, ηs) ∼ Binomial

(
y1,

(1− θ0)ηs
θ1

)
,

x1(1)|(y1, N1, θ0, ηe, ηs) ∼ Binomial

(
N1 − y1,

θ0ηe
1− θ1

)
,

9



independently. Consequently, we have

π(θ0, ηe, ηs|y1(0), x1(1),D)

∝ π(y1(0), x1(1),D|θ0, ηe, ηs)× π(θ0, ηe, ηs)

= π(y1(0), x1(1)|D, θ0, ηe, ηs)× π(D|θ0, ηe, ηs)× π(θ0, ηe, ηs)

= π(y1(0)|y1, θ0, ηe, ηs)× π(x1(1)|y1, N1, θ0, ηe, ηs)

× π(D|θ0, ηe, ηs)× π(θ0, ηe, ηs)

= Binomial

(
y1(0); y1,

(1− θ0)ηs
θ1

)
× Binomial

(
x1(1);N1 − y1,

θ0ηe
1− θ1

)
× Binomial(y0;N0, θ0)× Binomial(y1;N1, θ1)

× Beta(θ0;µ0n0, (1− µ0)n0)× Beta(ηe;µene, (1− µe)ne)× Beta(ηs;µsns, (1− µs)ns)

∝ θ
y0+y1−y1(0)+x1(1)+µ0n0−1
0 (1− θ0)

N−(y0+y1−y1(0)+x1(1))+(1−µ0)n0−1

× ηx1(1)+µene−1
e (1− ηe)

y1−y1(0)+(1−µe)ne−1

× ηy1(0)+µsns−1
s (1− ηs)

N1−y1−x1(1)+(1−µs)ns−1.

It follows that

π(θ0, ηe, ηs|y1(0), x1(1),D)

= Beta(θ0; y0 + y1 − y1(0) + x1(1) + µ0n0, N − (y0 + y1 − y1(0) + x1(1)) + (1− µ0)n0)

× Beta(ηe;x1(1) + µene, y1 − y1(0) + (1− µe)ne)

× Beta(ηs; y1(0) + µsns, N1 − y1 − x1(1) + (1− µs)ns). (C.2)

Similarly, for the mixture weights we have

π(y1(0), x1(1)|D) =

∫
π(y1(0), x1(1), θ0, ηe, ηs|D)dθ0dηedηs

=

∫
π(y1(0), x1(1)|θ0, ηe, ηs,D)π(θ0, ηe, ηs|D)dθ0dηedηs

∝
(

y1
y1(0)

)(
N1 − y1
x1(1)

)
B(x1(1) + µene, y1 − y1(0) + (1− µe)ne)

× B(y0 + y1 − y1(0) + x1(1) + µ0n0, N − (y0 + y1 − y1(0) + x1(1)) + (1− µ0)n0)

× B(y1(0) + µsns, N1 − y1 − x1(1) + (1− µs)ns). (C.3)

Hence, we can sample from the mixture distribution (3.10) as follows:

(i) Sample the unobserved count x1(1) ∈ {0, . . . , N1 − y1} conditional on D with proba-
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bility

π(x1(1)|D) =

y1∑
y1(0)=0

π(y1(0), x1(1)|D).

according to (3.11)

(ii) Sample y1(0) ∈ {0, . . . , y1} conditional on (x1(1),D) with probability

π(y1(0)|x1(1),D) ∝ π(y1(0), x1(1)|D).

according to (3.11),

(iii) Sample (θ0, ηe, ηs) conditional on (y1(0), x1(1),D) from the independent beta distri-

bution (3.12).

C.2 Sampling under monotonicity: no harm

Here we derive the BREASE posterior sampling algorithm under the “no harm” (ηs = 0)

monotonicity model M
′
− (E.1).

Theorem 4. Let (θ0, ηe) be random variables drawn according to Algorithm 2. Then (θ0, ηe)

are distributed according to the posterior of model M
′
− (E.1).

Proof. In this case, we make use of the posterior mixture representation

π(θ0, ηe|D) =

N1−y1∑
x1(1)=0

π(θ0, ηe|x1(1),D)× π(x1(1)|D). (C.4)

As discussed in Section C.1, we have

x1(1)|(y1, N1, θ0, ηe) ∼ Binomial

(
N1 − y1,

θ0ηe
1− θ1

)
.
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Note that θ1 = (1− ηe)θ0 by hypothesis. Consequently, we have

π(θ0, ηe|x1(1),D)

∝ π(x1(1),D|θ0, ηe)× π(θ0, ηe)

= π(x1(1)|D, θ0, ηe)× π(D|θ0, ηe)× π(θ0, ηe)

= π(x1(1)|y1, N1, θ0, ηe)× π(D|θ0, ηe)× π(θ0, ηe)

= Binomial

(
x1(1);N1 − y1,

θ0ηe
1− θ1

)
× Binomial(y0;N0, θ0)× Binomial(y1;N1, θ1)

× Beta(θ0;µ0n0, (1− µ0)n0)× Beta(ηe;µene, (1− µe)ne)

∝ θ
y0+y1+x1(1)+µ0n0−1
0 (1− θ0)

N−(y0+y1+x1(1))+(1−µ0)n0−1

× ηx1(1)+µene−1
e (1− ηe)

y1+(1−µe)ne−1.

It follows that

π(θ0, ηe|x1(1),D)

= Beta(θ0; y0 + y1 + x1(1) + µ0n0, N − (y0 + y1 + x1(1)) + (1− µ0)n0)

× Beta(ηe;x1(1) + µene, y1 + (1− µe)ne). (C.5)

Similarly, for the mixture weights we have

π(x1(1)|D) =

∫
π(x1(1), θ0, ηe|D)dθ0dηe

=

∫
π(x1(1)|θ0, ηe,D)π(θ0, ηe|D)dθ0dηe

∝
(
N1 − y1
x1(1)

)
B(x1(1) + µene, y1 + (1− µe)ne)

× B(y0 + y1 + x1(1) + µ0n0, N − (y0 + y1 + x1(1)) + (1− µ0)n0). (C.6)

Algorithm 2 defines the procedure to sample from the distribution C.4 based on these

calculations.

C.3 Sampling under monotonicity: no benefit

Here we derive the BREASE posterior sampling algorithm under the “no benefit” (ηe = 0)

monotonicity model M
′
+ (E.2).

Theorem 5. Let (θ0, ηs) be random variables drawn according to Algorithm 3. Then (θ0, ηs)

are distributed according to the posterior of model M
′
+ (E.2).
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Algorithm 2 “No harm” (ηs = 0) posterior sampling algorithm

Input: Data D = (y0, y1, N0, N1), hyperparameters (µ0, µe, n0, ne), and desired number
of posterior samples T .
Iterate: For sample t ∈ {1, . . . , T},
(i) Sample x1(1) ∈ {0, . . . , N1−y1} conditional on D with probability π(x1(1)|D) given

by (C.6).

(ii) Sample (θ0, ηe) conditional on (x1(1),D) from the independent beta distribution
(C.5).

Output: Posterior samples {(θ(t)0 , η
(t)
e )}t∈{1,...,T}.

Proof. In this case, we make use of the posterior mixture representation

π(θ0, ηs|D) =

y1∑
y1(0)=0

π(θ0, ηs|y1(0),D)× π(y1(0)|D). (C.7)

As discussed in Section C.1, we have

y1(0)|(y1, θ0, ηs) ∼ Binomial

(
y1,

(1− θ0)ηs
θ1

)
.

Note that θ1 = θ0 + (1− θ0)ηs by hypothesis. Consequently, we have

π(θ0, ηs|y1(0),D)

∝ π(y1(0),D|θ0, ηs)× π(θ0, ηs)

= π(y1(0)|D, θ0, ηs)× π(D|θ0, ηs)× π(θ0, ηs)

= π(y1(0)|y1, θ0, ηs)× π(D|θ0, ηs)× π(θ0, ηs)

= Binomial

(
y1(0); y1,

(1− θ0)ηs
θ1

)
× Binomial(y0;N0, θ0)× Binomial(y1;N1, θ1)

× Beta(θ0;µ0n0, (1− µ0)n0)× Beta(ηs;µsns, (1− µs)ns)

∝ θ
y0+y1−y1(0)+µ0n0−1
0 (1− θ0)

N−(y0+y1−y1(0))+(1−µ0)n0−1

× ηy1(0)+µsns−1
s (1− ηs)

N1−y1+(1−µs)ns−1.

It follows that

π(θ0, ηs|y1(0),D)

= Beta(θ0; y0 + y1 − y1(0) + µ0n0, N − (y0 + y1 − y1(0)) + (1− µ0)n0)

× Beta(ηs; y1(0) + µsns, N1 − y1 + (1− µs)ns). (C.8)
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Similarly, for the mixture weights we have

π(y1(0)|D) =

∫
π(y1(0), θ0, ηs|D)dθ0dηs

=

∫
π(y1(0)|θ0, ηs,D)π(θ0, ηs|D)dθ0dηs

∝
(

y1
y1(0)

)
B(y0 + y1 − y1(0) + µ0n0, N − (y0 + y1 − y1(0)) + (1− µ0)n0)

× B(y1(0) + µsns, N1 − y1 + (1− µs)ns). (C.9)

Algorithm 3 defines the procedure to sample from the distribution C.7 based on these

calculations.

Algorithm 3 “No benefit” (ηe = 0) posterior sampling algorithm

Input: Data D = (y0, y1, N0, N1), hyperparameters (µ0, µs, n0, ns), and desired number
of posterior samples T .
Iterate: For sample t ∈ {1, . . . , T},
(i) Sample y1(0) ∈ {0, . . . , y1} conditional on D with probability π(y1(0)|D) given by

(C.9).

(ii) Sample (θ0, ηs) conditional on (y1(0),D) from the independent beta distribution
(C.8).

Output: Posterior samples {(θ(t)0 , η
(t)
s )}t∈{1,...,T}.

C.4 Sampling with an alternate prior under H0 : θ0 = θ1

We now derive a sampling algorithm for the aggregated Dirichlet prior under H0 introduced

in Section E.1.1:

p∗ = (p00, p
∗
10, p11) ∼ Dirichlet((1− µs)ns, µene + µsns, (1− µe)ne), p∗10 = p10 + p01.

The algorithm is based on the posterior decomposition

π(p∗|D) =

y0+y1∑
w(0)=0

N0+N1−y0−y1∑
w(1)=0

π(p∗|w(0), w(1),D)× π(w(0), w(1)|D), (C.10)

where

w(0) = y0(0) + y1(0), w(1) = x0(1) + x1(1).
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We have

(y0(0), y0(1), x0(0), x0(1))|(p∗, N0) ∼ MultinomialN0(p
∗
10/2, p11, p00, p

∗
10/2),

(y1(0), y1(1), x1(0), x1(1))|(p∗, N1) ∼ MultinomialN1(p
∗
10/2, p11, p00, p

∗
10/2),

and the two distributions are independent. It follows that

y0(0)|(y0,p∗) ∼ Binomial

(
y0,

p∗10
p∗10 + 2p11

)
,

x0(1)|(y0, N0,p
∗) ∼ Binomial

(
N0 − y0,

p∗10
p∗10 + 2p00

)
,

y1(0)|(y1,p∗) ∼ Binomial

(
y1,

p∗10
p∗10 + 2p11

)
,

x1(1)|(y1, N1,p
∗) ∼ Binomial

(
N1 − y1,

p∗10
p∗10 + 2p00

)
,

independently. Hence, w(0) and w(1) are distributed independently as

w(0)|(y0, y1,p∗) ∼ Binomial

(
y0 + y1,

p∗10
p∗10 + 2p11

)
,

w(1)|(D,p∗) ∼ Binomial

(
N0 +N1 − y0 − y1,

p∗10
p∗10 + 2p00

)
,

Consequently, we have

π(p∗|w(0),w(1),D)

∝ π(w(0), w(1),D|p∗)× π(p∗)

= π(w(0), w(1)|D,p∗)× π(D|p∗)× π(p∗)

= π(w(0)|y0, y1,p∗)× π(w(1)|D,p∗)

× π(D|p∗)× π(p∗)

= Binomial

(
w(0); y0 + y1,

p∗10
p∗10 + 2p11

)
× Binomial

(
w(1);N0 +N1 − y0 − y1,

p∗10
p∗10 + 2p00

)
× Binomial(y0;N0, p

∗
10/2 + p11)× Binomial(y1;N1, p

∗
10/2 + p11)

× (p∗10)
µene+µsns−1p

(1−µe)ne−1
11 p

(1−µs)ns−1
00

∝ (p∗10)
w(0)+w(1)+µene+µsns−1p

y0+y1−w(0)+(1−µe)ne−1
11 p

N0+N1−y0−y1−w(1)+(1−µs)ns−1
00
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It follows that

p∗|(w(0), w(1),D) ∼ Dirichlet(a00, a10, a11), (C.11)

where

a00 = N0 +N1 − y0 − y1 − w(1) + (1− µs)ns,

a10 = w(0) + w(1) + µene + µsns,

a11 = y0 + y1 − w(0) + (1− µe)ne.

Consequently, for the mixture weights we have

π(w(0), w(1)|D) =

∫
π(w(0), w(1),p∗|D)dp∗

=

∫
π(w(0), w(1)|p∗,D)π(p∗|D)dp∗

∝
(
y0 + y1
w(0)

)(
N0 +N1 − y0 − y1

w(1)

)
×
∫
(p∗10/2)

w(0)+w(1)+µene+µsns−1p
y0+y1−w(0)+(1−µe)ne−1
11 p

N0+N1−y0−y1−w(1)+(1−µs)ns−1
00 dp∗

∝ 2−(w(0)+w(1))

(
y0 + y1
w(0)

)(
N0 +N1 − y0 − y1

w(1)

)
B(a00, a10, a11). (C.12)

Algorithm 4 defines the procedure to sample from the distribution C.10 based on these

calculations.

D Posterior quantities of interest

In addition to marginal likelihoods, we can derive analytical expressions for certain relevant

functionals of the BREASE posterior distribution π(θ0, ηe, ηs|D). While posterior quantities

can generally be easily estimated using simple Monte Carlo approximation with samples

obtained from Algorithm 1, analytical formulae may be of value, e.g., for conducting prior

sensitivity analysis of treatment effect estimands without needing to sample the posterior

for every choice of the hyperparameters (µ, n).

The risk difference θ1 − θ0 and risk ratio θ1/θ0 are of particular interest in practice,

with expectations of their posterior distributions often reported. We first note that, since

the posterior π(θ0, ηe, ηs|D) is a mixture of independent beta distributions, conditional

and marginal expectations and percentiles can be easily computed by first calculating

expectations or percentiles of the beta summands and averaging these quantities across the

mixture weights. For example, using the mixture representation (3.10) of the posterior, we
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Algorithm 4 Alternate H0 : θ0 = θ1 posterior sampling algorithm

Input: Data (y0, y1, N0, N1), hyperparameters (µe, µs, ne, ns), and posterior samples T .
Iterate: For sample t ∈ {1, . . . , T},
(i) Sample w(1) ∈ {0, . . . , N0 +N1 − y0 − y1} conditional on (y0, y1, N0, N1) as

π(w(1)|y0, y1, N0, N1) =

y0+y1∑
w(0)=0

π(w(0), w(1)|y0, y1, N0, N1).

(ii) Sample w(0) ∈ {0, . . . , y0+y1} conditional on (w(1), y0, y1, N0, N1) with probability

π(w(0)|w(1), y0, y1, N0, N1) ∝ π(w(0), w(1)|y0, y1, N0, N1).

(iii) Sample p∗ = (p00, p
∗
10, p11) conditional on (w(0), w(1), y0, y1, N0, N1) from the

Dirichlet distribution (C.11).

(iv) Transform p∗ to obtain samples of (θ0, θ1, ηe, ηs) via

θ0 = p∗10/2 + p11 = θ1, ηe =
p∗10

p∗10 + 2p11
, ηs =

p∗10
p∗10 + 2p00

.

Output: Posterior samples {((p∗)(t), θ
(t)
0 , θ

(t)
1 , η

(t)
e , η

(t)
s )}t∈{1,...,T}.

have

E[θ0|D] =

∫
θ0 · π(θ0, ηe, ηs|D)dθ0dηedηs

=

y1∑
y1(0)=0

N1−y1∑
x1(1)=0

π(y1(0), x1(1)|D)

∫
θ0 · π(θ0, ηe, ηs|y1(0), x1(1),D)dθ0dηedηs.

Applying equations (3.11) and (3.12) then yields an expression for E[θ0|D] in terms of

the data D and hyperparameters (µ, n), which we omit for brevity. In a similar fashion,

by exploiting the mixture-of-betas representation of the posterior, we can easily calculate

posterior expectations of polynomials
∑

(α0,αe,αs)
a(α0,αe,αs)θ

α0
0 η

αe
e η

αs
s , including those with

negative exponents, assuming D and (µ, n) are such that the integrals converge.

In particular, assuming treatment is not harmful (ηs = 0), the efficacy can be written

in terms of the risk ratio as ηe = 1 − θ1/θ0. The formulae derived in Appendix C.2 can

then be applied to calculate E[θ1/θ0|D] = 1−E[ηe|D] using the posterior π(θ0, ηe|D) under

the monotonicity assumption. More generally, we have

E[θ1/θ0|D] = E
[
θ0(1− ηe − ηs) + ηs

θ0

∣∣∣∣D]
= 1− E[ηe|D]− E[ηs|D] + E[θ−1

0 ηs|D].
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Similarly, the expected posterior risk difference can be obtained as

E[θ1 − θ0|D] = E[ηs|D]− E[θ0ηe|D]− E[θ0ηs|D].

In Section 4 we demonstrate how to conduct sensitivity analysis with the BREASE prior

for Bayes factors using the marginal likelihoods derived in Section 3.4. The discussion

therein applies just as well to treatment effects and other posterior quantities.

E Alternative models and priors

E.1 Other priors for H0

Recalling that θ0 = p10+p11 and θ1 = p01+p11, we see that θ0 = θ1 if and only if p10 = p01.

In this light, we discuss some alternate priors that conform to these constraints. While

instantiating H0 using the beta-binomial model M0 (3.14) should be preferable in most

applications, the prior we discuss here may apply in cases where one has stronger prior

information concerning the efficacy and side effects of treatment (ηe, ηs) rather than the

baseline risk θ0 itself.

E.1.1 Aggregated Dirichlet

With a Dirichlet∗(µ0, µe, µs;n0) prior on p, we have by the aggregation property of the

Dirichlet distribution (Ng, Tian, and Tang, 2011)

(p00, p10 + p01, p11) ∼ Dirichlet((1− µs)ns, µene + µsns, (1− µe)ne),

where ne = µ0n0 and ns = (1− µ0)n0. Assuming H0 holds, and defining p∗10 = p10 + p01 =

2p10, we obtain the Dirichlet prior density on the aggregated cell probabilities

π(p00, p
∗
10) = B((1− µs)ns, µene + µsns, (1− µe)ne)

−1p
(1−µs)ns−1
00 (p∗10)

µene+µsns−1p
(1−µe)ne−1
11 ,

where p11 = 1− p00 − p∗10 and B(a00, a10, a11) is the multivariate beta function:

B(a00, a10, a11) =
Γ(a00)Γ(a10)Γ(a11)

Γ(a00 + a10 + a11)
.

This prior allows for exact posterior sampling and marginal likelihood calculation in cases

where we may have stronger prior information concerning the efficacy and side effects of

treatment (ηe, ηs) than the baseline risk θ0. Indeed, note that the prior is fully specified by

the hyperparameters (µe, µs, ne, ns). Recalling that the Dirichlet∗ prior is obtained from
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the generalized Dirichlet by setting ne = µ0n0 and ns = (1− µ0)n0, we see that this prior

assumes that we have as much prior knowledge on θ0 as we do on (ηe, ηs).

With this parametrization, the likelihood under H0 is given by

L(D|p) =
(
N0

y0

)(
N1

y1

)
(p∗10/2 + p11)

y0+y1(p00 + p∗10/2)
N0+N1−y0−y1 .

The posterior is then

π(p00, p
∗
10|D) ∝

(
N0

y0

)(
N1

y1

)
B((1− µs)ns, µene + µsns, (1− µe)ne)

−1

× (p∗10/2 + p11)
y0+y1(p00 + p∗10/2)

N0+N1−y0−y1

× (p∗10)
µene+µsns−1p

(1−µe)ne−1
11 p

(1−µs)ns−1
00 .

From here we can apply the binomial theorem twice to quickly see that the posterior is a

mixture of Dirichlet densities on the probability vector p∗ = (p00, p
∗
10, p11). This yields the

marginal likelihood formula

L(D) =

(
N0

y0

)(
N1

y1

)
B((1− µs)ns, µene + µsns, (1− µe)ne)

−1

×
y0+y1∑
j=0

N0+N1−y0−y1∑
k=0

2−(j+k)

(
y0 + y1
j

)(
N0 +N1 − y0 − y1

k

)
B(a00(j, k), a10(j, k), a11(j, k)),

where we define

a00(j, k) = N0 +N1 − y0 − y1 + (1− µs)ns − k,

a10(j, k) = j + k + µene + µsns,

a11(j, k) = y0 + y1 + (1− µe)ne − j.

In Section C.4, we derive an algorithm for exact posterior sampling using the aggregated

Dirichlet prior on (p00, p
∗
10, p11).

E.2 Other priors for H− and H+

Another approach for specifying models for H− and H+, which is both natural and com-

putationally convenient, is to impose a monotonicity assumption on M1, and set ηs = 0 or

ηe = 0 respectively. This results in the following models,

M
′

− : (θ0, ηe) ∼ Beta∗(µ0, n0)× Beta∗(µe, ne), θ1 = (1− ηe)θ0 (E.1)

M
′

+ : (θ0, ηs) ∼ Beta∗(µ0, n0)× Beta∗(µs, ns), θ1 = θ0 + ηs(1− θ0), (E.2)
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with marginal likelihoods given by

L
′

−(D) =

(
N0

y0

)(
N1

y1

)N1−y1∑
k=0

(
N1 − y1

k

)
× B(y0 + y1 + k + µ0n0, N − (y0 + y1 + k) + (1− µ0)n0)

B(µ0n0, (1− µ0)n0)

× B(k + µene, y1 + (1− µe)ne)

B(µene, (1− µe)ne)
,

and

L
′

+(D) =

(
N0

y0

)(
N1

y1

) y1∑
j=0

(
y1
j

)
× B(y0 + j + µ0n0, N − (y0 + j) + (1− µ0)n0)

B(µ0n0, (1− µ0)n0)

× B(y1 − j + µsns, N1 − y1 + (1− µs)ns)

B(µsns, (1− µs)ns)
.

Here we interpret the constraint ηs = 0 (or ηe = 0) simply as a causally principled way to

derive a prior compatible with the desired constraint H− : θ1 < θ0 (or H+ : θ1 > θ0), and

not as testing the former constraint in lieu of the latter.21 One interesting characteristic of

modelsM
′
− andM

′
+ is that they do not put θ0 and θ1 on equal footing, even when choosing

beta priors compatible with the BREASE(1/2, µ, µ; 2, 1, 1) distribution, which places flat

marginals on θ0 and θ1. This is usually desirable, e.g., when the control condition indeed

denotes a well understood baseline, such as a standard of care. Symmetry of θ0 and θ1,

however, can also be easily restored by switching the roles of the “treatment” and “control”

conditions, as discussed in Appendix E.2. Algorithms to sample exactly from the posterior

under M
′
− and M

′
+ are provided in Appendix C.

Returning to the model M
′
− (E.1), some natural values for the prior hyperparameters

are

µ0 = µe = 1/2, n0 = ne = 2,

which define a flat Uniform(0, 1)2 prior on (θ0, ηe). The resulting conditional prior on θ1 is

θ1|θ0 ∼ Uniform(0, θ0),

which presents an intuitive representation of the hypothesis H− : θ1 < θ0. Note, however,

21In general, the data cannot differentiate the stronger constraint, such as ηs = 0 (no one is hurt by the
treatment), from the weaker constraint θ1 < θ0 (the treatment is beneficial on average), since the likelihood
depends only on θ1 and θ0. Thus, in this case, differences in using M− or M

′

− amounts to differences only
in the induced priors satisfying the same testable constraint θ1 < θ0, such as one placing more (or less)
mass on smaller (or larger) effects than the other.
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Figure 7: Left: heatmap of joint prior on (θ0, θ1) implied by the M− prior (3.15) with
µ0 = 1/2, µe = µs = 0.3, n0 = 2, ne = ns = 1. Center: prior on (θ0, θ1) under M

′
−

with the same values of (µ0, µe, n0, ne). Right: prior on (θ0, θ1) under the mixture model
(M

′
−+M

′′
−)/2 with µ1 = 1/2, µ′

s = 0.3, n1 = 2, n′
s = 1 and the same values of (µ0, µe, n0, ne).

that this specification of the model handles θ0 as the baseline quantity. We can also go in

the other direction, specifying priors on θ1 and the “side effects of placebo” η′s and defining

θ0 = θ1 + (1− θ1)η
′
s,

which also instantiates H− : θ1 < θ0. We denote by M
′′
− the model

(θ1, η
′
s) ∼ Beta∗(µ1, n1)× Beta∗(µ′

s, n
′
s),

θ0 = θ1 + (1− θ1)η
′
s.

This asymmetry in our handling of θ0 and θ1 is reflected in the joint priors of (θ0, θ1) under

M
′
− and M

′′
−. As the central panel of Figure 7 exhibits, the M

′
− joint prior tends to favor

small proportions (whereas M
′′
−, not plotted, favors large proportions). On the other hand,

sampling (θ0, ηe, ηs) from the BREASE prior truncated to the set {(θ0, ηe, ηs) : θ1 < θ0}
(i.e., the M− prior (3.15)) yields a symmetric joint density on (θ0, θ1) (left panel of Figure

7). To assuage this asymmetry, we can put θ0 and θ1 on equal footing when testing the

one-sided hypothesis H− (and, similarly, H+) by using a prior that averages those under

M
′
− and M

′′
−, as in the right panel of Figure 7. In practice, we can decompose H− into

the submodels M
′
− and M

′′
− and report the marginal likelihood of H− as the average of

the submodel marginal likelihoods. As the marginal likelihood under M
′′
− is also available

analytically, this procedure comes with negligible added computational cost.
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Figure 8: Comparison of Bayes factors (BF01) and log marginal likelihoods under model
M1 (3.13) of the default LT, default BREASE, and empirical Bayes BREASE priors across
the 39 NEJM studies.

E.3 An empirical Bayes prior

As ηe and ηs are counterfactual probabilities, they are not generally point-identified from

data. However, since θ0 and θ1 are identifiable, we can derive robust bounds on their

range of possible values based on the observed data (Tian and Pearl, 2000). Equation (3.3)

implies the following algebraic constraints on ηe and ηs:

max

{
0,
θ0 − θ1
θ0

}
≤ ηe ≤ min

{
1,

1− θ1
θ0

}
, (E.3)

max

{
0,
θ1 − θ0
1− θ0

}
≤ ηs ≤ min

{
1,

θ1
1− θ0

}
. (E.4)

The inequalities (E.3) and (E.4) define the (marginal) partially identified regions of ηe and

ηs, respectively. Denote these intervals by Ie(θ0, θ1) = [ℓe(θ0, θ1), ue(θ0, θ1)] and Is(θ0, θ1) =

[ℓs(θ0, θ1), us(θ0, θ1)]. In the limit of infinite data, the posterior mass of ηe and ηs will

concentrate within Ie(θ
∗
0, θ

∗
1) and Is(θ

∗
0, θ

∗
1), respectively, assuming θ∗0, θ

∗
1 are the true values.

When conducting a Bayesian hypothesis test, a main concern is the sensitivity of Bayes

factors to the prior. As demonstrated in Section 4, a prior that places unreasonable as-

sumptions on the treatment effects can lead to questionable conclusions. In this light, it

may be desired to take a data-driven approach to prior specification that concentrates prior

mass near the partially identified intervals of ηe and ηs. For example, we can set the prior
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means µe and µs to equal their midpoints:

µ̂e =
1

2

(
ℓe(θ̂0, θ̂1) + ue(θ̂0, θ̂1)

)
,

µ̂s =
1

2

(
ℓs(θ̂0, θ̂1) + us(θ̂0, θ̂1)

)
,

where we use point estimates of the population proportions:

θ̂0 =
y0 + 1

N0 + 2
, θ̂1 =

y1 + 1

N1 + 2
.

As θ̂0 shrinks the sample proportion toward 1/2, it avoids division by zero in (E.3) and

(E.4). Hence, we might consider priors of the form BREASE(1/2, µ̂e, µ̂s; 2, n, n) with n ≥ 0.

As this prior is estimated from the observed data, it can be thought of as an empirical Bayes

approach (Robbins, 1992). As such, we denote it by BREASE-EB(n).

Note that when n = 1 and θ̂0 = θ̂1 = 1/2 (e.g., in the absence of data or when the sample

proportions are 1/2), we obtain a vague Jeffreys marginal prior Beta(1/2, 1/2) on ηe and

ηs. The choice of prior sample size n = 1 yields something resembling a unit information

prior (Kass and Wasserman, 1995), wherein the prior mean is estimated from data and

its spread is chosen so that the information content of the prior matches that of a single

observation.

Figure 8 compares Bayes factors (BF01) and log marginal likelihoods under model M1

(3.13) of the default LT(0, 0; 1, 1), BREASE(1/2, 0.3, 0.3; 2, 1, 1), and BREASE-EB(1) pri-

ors across the 39 NEJM studies reporting null results. The BREASE and BREASE-EB

priors tend to provide the most equivocal Bayes factors on average, with mean BF01 equal

to 4.41, 4.42, and 5.38 for the BREASE-EB, BREASE, and LT priors, respectively. How-

ever, BREASE-EB Bayes factors tend to be closer to those of the LT approach than the

default BREASE prior, with mean absolute percentage differences from the LT BF01 of

19% for the former and 32% for the latter.

Comparing log marginal likelihoods, which quantify the predictive performance of a

model, we see that the BREASE-EB and default BREASE priors perform similarly, and

generally better than the default LT prior, although the default BREASE performs slightly

better overall. Indeed, the default BREASE log marginal likelihood exceeds the LT in

74% of the studies compared to 59% for the BREASE-EB prior. Furthermore, the default

BREASE outperforms BREASE-EB in 62% of the studies.
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F Bayes factors with the IB and LT approaches

Following Dablander et al. (2022), we calculate the Bayes factor BF10 for the IB approach

using the Savage-Dickey density ratio method applied to the difference of proportions η =

θ0 − θ1 (Wagenmakers et al., 2010). A formula for the prior density of η at the null

H0 : η = 0 can be found in Appendix A of (Dablander et al., 2022). The Bayes factor using

the IB((a, a), (a, a)) prior under H1 as described in Section 2.2.1 is then

BF10 =
B(2a− 1, 2a− 1)B(a+ y0, a+N0 − y0)B(a+ y1, a+N1 − y1)

B(2a+ y0 + y1 − 1, 2a+N0 − y0 +N1 − y1 − 1)B(a, a)2
.

Posterior estimates and credible intervals under H1 are calculated using exact samples from

the independent beta posterior.

Bayes factors BF10 for the LT approach are calculating using the abtest package in

R (Gronau, Raj, and Wagenmakers, 2021). The package uses a Laplace approximation to

calculate BF10, which is shown to have good performance. The LT prior under H1 is as

described in Section 2.2.2. Under H0 : ψ = 0, the prior is β ∼ Normal(µβ, σβ) with default

values (µβ, σβ) = (0, 1). Posterior estimates and credible intervals under H1 are calculated

using posterior samples output by abtest. As abtest only reports marginal likelihoods up

to a multiplicative constant, we used RJAGS (Plummer, 2023) to generate MCMC samples

from the LT posterior and THAMES (Metodiev et al., 2023) to estimate the LT marginal

likelihood for Figure 5b using the samples.
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