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Abstract
We develop a polynomial-time algorithm for iden-
tification of structural coefficients in linear causal
models that subsumes previous efficient state-of-
the-art methods, unifying several disparate ap-
proaches to identification in this setting. Building
on these results, we develop a procedure for iden-
tifying total causal effects in linear systems.

1. Introduction
Regression analysis is one of the most popular methods
used to understand the relationships across multiple vari-
ables throughout the empirical sciences. The most common
type of regression is linear, where one attempts to explain
the observed data by fitting a line (or hyperplane), minimiz-
ing the sum of the corresponding deviations. This method
can be traced back at least to the pioneering work of Leg-
endre and Gauss (Legendre, 1805; Gauss, 1809), in the
context of astronomical observations (Stigler, 1986). Linear
regression and its generalizations have been the go-to tool
of a generation of data analysts, and the workhorse behind
many recent breakthroughs in the sciences, in businesses,
and throughout engineering. Based on modern statistics and
machine learning techniques, it’s feasible to handle regres-
sion instances up to thousands, sometimes even millions of
variables at the same time (Hastie et al., 2009).

Despite the power entailed by this family of methods, one of
its main drawbacks is that it only explains the association (or
correlation) between purported variables, while remaining
silent with respect to any possible cause and effect relation-
ship. In practice, however, learning about causation is often
the main goal of the exercise, sometimes, the very reason
one engaged in the data collection and the subsequent anal-
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ysis in the first place. For instance, a health scientist may
be interested in knowing the effect of a new treatment on
the survival of its patients, while an economist may attempt
to understand the unintended consequences of a new policy
on a nation’s gross domestic product. If regression analysis
doesn’t allow scientists to answer their more precious ques-
tions, which framework could legitimize such inferences?

The discipline of causal inference is interested in formal-
izing precisely these conditions, and, more broadly, pro-
viding a principled approach to combining data and partial
understanding about the underlying generating processes
to support causal claims (Pearl, 2000; Spirtes et al., 2000;
Bareinboim & Pearl, 2016). One popular framework used to
study this family of problems is known as structural causal
models (SCMs, for short). Given the pervasiveness of linear
regression in data-driven disciplines, we’ll focus on the class
of linear structural models, following the treatment provided
in Wright (1921) and as discussed more contemporaneously
in Pearl (2000, Ch. 5).

In this class of SCMs, the set of observed variables is de-
termined by a linear combination of their direct causes and
latent confounders (or errors terms). Formally, this is rep-
resented as a system of linear equations X = ΛTX + ε,
where X is a vector of observed variables, ε is a vector
of latent variables, and Λ is an upper triangular matrix of
direct effects, otherwise known as path coefficients, whose
ijth element, λij gives the magnitude of the direct causal
effect of xi on xj . The error terms are commonly as-
sumed to be normally distributed, which means that the
covariance matrix Σ characterizes the observational distri-
bution. This matrix can be linked to the underlying struc-
tural parameters through the system of polynomial equations
Σ = XXT = (I − Λ)−TΩ(I − Λ)−1. Identification then
is reduced to finding the elements of Λ that are uniquely
determined by the above system. If a structural parameter
can be expressed in terms of the elements of Σ alone, it is
said to be generically identifiable (Foygel et al., 2012; Drton
& Weihs, 2015).

Generic identification can be fully solved using computer
algebra as shown in García-Puente et al. (2010). In prac-
tice, however, this method has a doubly-exponential com-
putational complexity (Bardet & Chyzak, 2005), becoming
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impractical for instances larger than four or five variables
(Foygel et al., 2012). It is currently unknown whether the
identifiability of an arbitrary structural parameter can be
determined in polynomial time.

Instead, most efficient identification algorithms search for
patterns in the covariance matrix known to correspond to
specific, solvable subsystems of direct effects. The most
well-known of such methods is known as instrumental vari-
able (IV) (Wright, 1928). In modern terminology, an “in-
strument” z relative to a direct effect λxy needs to be d-
separated (Koller & Friedman, 2009) from y, while it can-
not be d-separated from x in the modified graph where the
target edge x→ y is removed (Pearl, 2000). The existence
of such a variable means that λxy =

σzy

σzx
, and, therefore, is

uniquely determined by the observational distribution.

The IV and its generalization, the conditional IV (cIV), are
heavily exploited in the literature, particularly in the field of
econometrics (Fisher, 1966; Bowden & Turkington, 1984).
Despite its success, many identifiable effects in a linear
system cannot be found with IVs and cIVs. Therefore, the
past two decades has witnessed a push in the development
of successively more sophisticated identification methods.

Two promising avenues towards efficiently solving generic
identification are conditional Auxiliary Variables (cAV)
(Chen et al., 2017) and Instrumental Cutsets (IC) (Kumor
et al., 2019), both of which provide poly-time algorithms
encompassing previous works such as the half-trek crite-
rion (HTC) (Foygel et al., 2012), the generalized half-trek
criterion (gHTC) (Chen, 2016; Weihs et al., 2018), auxil-
iary variable sets (AVS) (Chen et al., 2016), and conditional
instrumental variables (cIV) (Van der Zander et al., 2015).

Another class of graphical criteria has no known efficient
algorithm to date. These methods currently require an ex-
ponential number of steps. One such algorithm, the gener-
alized instrumental set (gIS) (Brito & Pearl, 2002) and its
generalization, the quasi-AV set (qAVS) (Chen et al., 2017),
have thus far eluded characterization. The perceived diffi-
culty of finding gIS (Tian, 2007) is compounded by a proof
that given a candidate set of instruments, finding whether
conditioning sets exist to make a gIS is NP-hard (Van der
Zander & Liskiewicz, 2016). This was further exasperated
when Kumor et al. (2019) proved that finding simplified
conditional instrumental sets (scIS) is also NP-hard.

We roughly summarize these methods in Fig. 1, even though
it lies outside the scope of this paper to survey this rich
literature. It can be seen that the literature is splintered
among several competing methods, with the state-of-the-art
in poly-time identification being IC or cAV, depending on
the setting. It’s not currently known how these methods
compare to qAVS, which has undetermined complexity.

The main goal of this paper is to provide an unifying treat-

ACID (new)

qAVS

IC

cAV

IS, HTC, AVS, gHTC

gIS, scIS

cIV

IV

Figure 1. Summary of the discussed identification methods. a→ b
means all methods in b subsume all methods in a. Green boxes
represent existence of polynomial-time algorithms, orange ones are
undetermined or NP-hard. ACID is the newly proposed algorithm.

ment of the threads and corresponding algorithms found
in this literature, under the umbrella of a single, efficient
algorithm. In particular, our contributions are:

• We develop the Auxiliary Cutset Identification Algo-
rithm (ACID), which runs in polynomial-time, and
unifies and strictly subsumes existing efficient iden-
tification methods (such as IC and cAV) as well as
conditioning-based methods with unknown complexity
(qAVS).

• We design a strategy for identification of total effects
based on the decomposition of the target query into
smaller, more manageable effects that can be effec-
tively and systematically solved by algorithms de-
signed for direct effects.

2. Preliminaries
The causal graph of an SCM is defined as a triple G =
(V,D,B), representing the nodes, directed, and bidirected
edges, respectively. A linear SCM has a node vi for each
variable xi, a directed edge between vi and vj for each non-
zero λij , and a bidirected edge between vi and vj whenever
there is latent confounding between the variables, i.e., non-
zero εij = σεiεj (Fig. 2a). When clear from the context,
we will use λij and εij to refer to the corresponding di-
rected and bidirected edges in the graph. In keeping with
other works, we define Pa(xi) as the set of parents of xi,
An(xi) as ancestors of xi, De(xi) as descendants of xi,
and Sib(xi) as variables connected to xi with bidirected
edges (i.e., variables with latent common causes).

A path in the graph is said to be “active" conditioned on
a (possibly empty) set W if it contains a collider at node
b (· · · → b ← · · · ) only when b ∈ W ∪ An(W ), and
if it does not otherwise contain vertices from W (see d-
separation (Koller & Friedman, 2009)). Active paths with-
out conditioning do not contain colliders, and are referred to
as treks (Sullivant et al., 2010). The covariances of observed
variables have a graphical interpretation in terms of a sum
over all treks between nodes in the causal graph, namely



Efficient Identification in Linear Structural Causal Models with Auxiliary Cutsets

z

x

y

λzx

λxy εxy

(a)

x

y

z

x’

y’

z’

λxy

λzx

λxy

λzx

εxx

εyy

εzz

ε
x
y εx

y

(b)

y

x1 x2

z1 z2

(c)

z

x

y

λzx

λxy

εzy

(d)

x

y

z

x’

y’

z’

λxy

λzx

λxy

λzx

εxx

εyy

εzz

ε
z
y

ε z
y

(e)

y

x1
x2

z1 z2

w

(f)

y

x1
x2

z1 z2

w

(g)

Figure 2. In (a), z is an instrument for λxy . (b) shows a directed flow graph encoding the covariances between variables, with σxy

highlighted in blue. (c) λx1y cannot be solved using a conditional instrument, but can be approached using the instrumental set {z1, z2}.
(d) knowledge of λzx can be used to remove the backdoor path from x to y, shown in (e)’s flow graph (f) λx1y cannot be solved by either
IC nor cAV, but can be solved using gIS. (g) After applying Tian’s model decomposition to the graph in (f), it becomes equivalent to the
one in c, making the desired parameter efficiently solvable.

σxy =
∑
π(x, y), where π is the product of structural pa-

rameters along the trek.

While methods such as Wright’s rules of path analysis are
commonly used for reading covariances directly from the
causal graph, we follow the identification literature and
define a “flow graph”, which explicitly encodes the treks
between nodes in its directed paths, allowing a direct algo-
rithmic approach to path analysis.

Definition 2.1. (Sullivant et al., 2010; Weihs et al., 2018;
Kumor et al., 2019) The flow graph of G = (V,D,B) is the
graph with vertices V ∪ V ′ containing the edges:

• j → i and i′ → j′ with weight λij if i→ j ∈ D

• i→ i′ with weight εii for all i ∈ V

• i→ j′ with weight εij if i↔ j ∈ B

This graph is referred to as Gflow. The nodes without ′ are
called “source”, or “top” nodes, and the nodes with ′ are
called “sink” or “bottom” nodes.

As an example, consider the instrumental variable graph of
Fig. 2a. Each trek corresponds to a directed path in the flow
graph shown in Fig. 2b. Summing over all paths from x to
y′ (in blue), we obtain the covariance between these two
variables,

σxy = λzxεzzλzxλxy + εxxλxy + εxy = σxxλxy + εxy

Reading covariances from the flow graph can help in visu-
alizing the IV: σzy

σzx
=

εzzλzxλxy

εzzλzx
= λxy. Finally, in Fig. 2c,

there is no single instrument, but one can use the instrumen-
tal set {z1, z2} to construct a solvable system of equations
(Brito & Pearl, 2002),

σz1y = σz1x1
λx1y + σz1x2

λx2y

σz2y = σz2x1
λx1y + σz2x2

λx2y

(1)

To simplify discussion of paths in the graph, we define the
partial effect of a on b avoiding set C, denoted as δab.C ,
as the causal effect of a on b when holding all variables in
C constant (δab.C = ∂

∂a IE[b | do(a), do(C)]). This corre-
sponds to the sum of all products of direct effects along the
directed paths from a to b that do not cross any nodes in
C. In particular, two special cases are worth noting. First,
when C = ∅, then δab.C = δab is the total effect of a on b.
Second, when a ∈ Pa(b) and C = Pa(b)\{a}, we recover
the direct effect δab.C = λab.

2.1. Auxiliary Variables

One can leverage direct effects that were previously iden-
tified to create new variables to help with the identifica-
tion of further edges. For example, in Fig. 2d, λzx can
be trivially identified with the regression coefficient of z
on x, λzx = σzx

σzz
. Once λzx is known, one can create an

auxiliary variable (AV) x∗ = x − λzxz subtracting out
the direct effect of z. This new variable behaves as if the
edge λzx did not exist in the graph, eliminating the back-
door path from x to y, and allowing the identification of
the direct effect of x on y with the regression coefficient
of x∗ on y, i.e, λxy =

σx∗y
σx∗x

(Chen et al., 2016). This
phenomenon can also be observed in the flow graph of
Fig. 2d, shown in Fig. 2e. The covariance of x∗ with y
reads σx∗y = σxy − λzxσzy = εxxλxy. That is, the op-
eration to create x∗ effectively removes the source edge
λzx (red) from the flow graph. Next, dividing σx∗y by
σx∗x = σxx − λzxσzx = εxx gives λxy .

2.2. Trek Systems & Determinants

Instrumental variables and instrumental sets can be gener-
alized in the flow graph by exploiting properties of deter-
minants of the minors of the covariance matrix (Sullivant
et al., 2010). Denote by Σz1z2,x1x2

the minor of the co-
variance matrix with columns z1, z2 and rows x1x2. This
gives us det Σz1z2,x1x2 = σz1x1σz2x2 − σz2x1σz1x2 . As
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shown by Gessel & Viennot (1989), the value of this deter-
minant can be read directly from the flow graph as the sum
of non-intersecting sets of paths (i.e, paths which do not
share any vertices) between z1, z2 and x′1, x

′
2, multiplied by

the sign of their permutations (see Gessel & Viennot (1989)
for details). This is due to the fact that terms that come from
intersecting paths cancel out when computing the determi-
nant, leaving only terms corresponding to non-intersecting
paths. We therefore have det Σz1z2,x1x2 as the product of
non-intersecting paths between z1 → x′1 and z2 → x′2, with
the non-intersecting paths between z1 → x2 and z2 → x1

subtracted out. If any such path set exists, the determinant
can be shown to be generically non-zero.

For illustration, consider the flow graph of Fig. 2c, which
is shown in Fig. 3. There is only one non-intersecting path
set between z1 → x1 and z2 → x2, namely εz1z1λz1x1

and
εz2z2λz2x2 . Similarly, the non-intersecting path set between
z1 → x2 and z2 → x1 consists of the paths εz1z1λz1x2 and
εz2z2λz2x1

. The determinant is given by

det Σz1z2,x1x2 = (εz1z1λz1x1)(εz2z2λz2x2)

− (εz1z1λz1x2)(εz2z2λz2x1) (2)

Weihs et al. (2018) realized that this property can be ex-
ploited for the identification of structural parameters. Solv-
ing for det Σz1z2,yx2

, the same non-intersecting paths exist
between the sets as shown in Fig. 3, but all paths to x′1 are
now extended to y′. This yields

det Σz1z2,yx2
= λx1y det Σz1z2,x1x2

(3)

allowing identification of λx1y =
det Σz1z2,yx2

det Σz1z2,x1x2
, which

formally recovers Cramer’s rule solution of Eq. (1) for λx1y .

2.3. Model Decomposition

One can also decompose a graph into smaller sub-graphs.
First proposed by Tian (2005), the decomposition hinges
upon the concept of a c-component, consisting of a set
of variables connected through paths consisting solely of
bidirected edges. Consider Fig. 2f. Here, x1 has a bidi-
rected edge to y, which in turn is connected to x2 and w via
bidirected edges. This makes {w, x1, x2, y} a c-component.
Likewise, {z1, z2} is also a c-component.

Given a c-component, we can define a subgraph consisting
of the nodes in the c-component and its direct parents, with
all other variables and edges removed. This subgaph is
called a “mixed component” of G.
Definition 2.2. (Tian, 2005; Drton & Weihs, 2015) Given
G = (V,D,B), let C1, ..., Ck ⊂ V be the unique parti-
tioning of V where v, w ∈ Ci iff ∃ path from v to w com-
posed only of bidirected edges, and let Vi = Ci ∪ Pa(C1),
Di = {v → w ∈ G|v ∈ Vi, w ∈ Ci} and Bi = {v ↔ w ∈
G|v, w ∈ Ci}. Then Gi = (Vi, Di, Bi), i = 1...k are the
mixed components of G.

y′y

x1 x′1 x2 x′2

z1 z′1 z2 z′2

y′y

x1 x′1 x2 x′2

z1 z′1 z2 z′2

Figure 3. The flow graph of Fig. 2c, showing the two non-
intersecting path sets from z1, z2 to x1, x2

The mixed component of {w, x1, x2, y} in Fig. 2f is shown
in Fig. 2g. Whereas existing efficient methods fail to identify
λx1y in Fig. 2f, it is easily identifiable in Fig. 2g. As shown
by Tian (2005), this means the effect is also identifiable in
the original graph.

3. Identification with the Auxiliary Cutset
In this section, we develop a polynomial-time algorithm that
subsumes the state-of-the-art for efficient identification in
linear SCM. We begin by defining a new type of auxiliary
variable, which can help with the identification of new co-
efficients in the model. We then devise an identification
criterion for partial effects, and show how to use it to ef-
ficiently create these new AVs. Finally, we show how our
results can be used to recursively identify direct effects.

3.1. Auxiliary variables using total and partial effects

Standard auxiliary variables enable the use of previously
identified direct effects to remove edges from the flow graph.
In some cases, such as in Fig. 2d, this allows us to directly
identify a target parameter, bypassing the need to search for
a conditioning set. However, in many cases, auxiliary vari-
ables using only identifiable direct effects are not sufficient
for this task.

An example of such a model is given in Fig. 2f. Here, al-
though the generalized instrumental set {z1, z2} conditional
on w is sufficient for identifying λx1y and λx2y , we cannot
achieve the same result with AVs. While z∗2 = z2 − λwz2w
can be computed (because λwz2 is identified), the AV
z∗1 = z1 − λwz1w − λz1z2z2 cannot, since that requires
the identification of both λwz1 and λz1z2 . This suggests that
there is something missing from AVs that rely solely on
direct effects.

The source of the issue can be revealed in the mixed com-
ponent of the model (Fig. 2g). Here, w is disconnected
from z1 and z2, which becomes equivalent to the model
in Fig. 2c. In the mixed component, λx1y and λx2y can
be easily identified using an unconditional instrumental set
{z1, zw}. This leads to the realization that it may not be
necessary to identify the direct effects λwz1 and λz1z2 to
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Figure 4. (a) A naïve application of total-effect AVs can’t be used
here. (b) Only ACID can solve for λx1y .

disconnect z1 from w—it suffices to identify the total effect
of w on z1. As it happens, this effect is easily computable
with the regression coefficient of w on z1, i.e, δwz1 =

σwz1

σww
.

We can now create a new type of AV, z†1 = z1 − δwz1w,
which indeed behaves as if z1 had no path to w. Combining
z†1 with the standard AV z∗2 leads to a system of equations
that can be solved for λx1y and λx2y ,

σz†1y
= σz1y − δwz1σwy = λx1yσz†1x1

+ λx2yσz†1x2

σz∗2y = σz2y − λwz2σwy = λx1yσz∗2x1
+ λx2yσz∗2x2

One needs to be careful when generalizing the results of this
example—sometimes, a naïve subtraction of total effects
can backfire. Consider, for instance, the model of Fig. 4a,
and suppose we want to use x as an AV for the target query
λxy. Note we can identify the total effects δax and δdx.
But also note that in the “naïve AV” x‡ = x − δdxd −
δaxa, subtracting out both total effects, does not remove the
backdoor paths of x with y,

σx‡y = σxy − δaxσay − δdxσdy = λxyσx‡x−δdxλadεay

This happens because the total effect of a already includes
parts of the total effect of d, and thus when constructing the
“naïve AV” x‡ we subtracted the path λadλdx twice.

One way to avoid this problem is to use only the portions
of the effect of a on x that do not pass through d. That is,
instead of subtracting out the total effect δax, we subtract out
the partial effect δax.d, leading to x† = x− δdxd− δax.da.
Indeed, as desired, this removes all backdoor paths,

σx†y = σxy − δax.dσay − δdxσdy = λxyσx†x

In other words, by using only paths that do not intersect any
other variable subtracted in the AV, we can avoid subtracting
any path more than once, allowing us to effectively remove
all of x’s backdoor paths to both a and d at the same time.
We formalize this idea in Theorem 3.1.

Theorem 3.1. Given a variable x, and a subset C of the
ancestors of x, the covariance of the auxiliary variable

a a′

d

d′

x′x

c c′

b b′

Figure 5. The flow graph of Fig. 4a, excluding y. To find the partial
effects δax.d and δdx.a (a′, d′ in blue), we can use the partial-effect
instrumental set a, b (red).

x† = x−
∑
i δcix.C × ci with variable v can be determined

by the sum of paths from x to v′ in Gflow with source edges
λcidj removed where ci ∈ C and dj ∈ An(x).

Proof. Proofs are given in (Kumor et al., 2020).

3.2. Instrumental sets for partial-effects

Theorem 3.1 gives us a principled way to incorporate knowl-
edge of partial effects into the flow graph in order to help
existing identification algorithms. A natural question now
arises: how can we identify those partial effects? In this
subsection, we demonstrate how a modified version of in-
strumental sets can solve this task. In particular, we exploit
the same property that was used to identify a direct effect in
the example of Eq. (3).

Continuing with the model of Fig. 4a, we want to identify
δdx.a = δdx and δax.d. To help with understanding the
general approach, we will operate on the flow graph of
Fig. 4a excluding y, shown in Fig. 5. We have placed a′, d′

(blue) in the sink nodes. Notice that the paths from a′ to x′

form δax. All paths from a′ to x′ that do not intersect with
d′ form δax.d. Likewise, the paths from d′ to x′ form δdx,
which in this case is the same as δdx.a. Our goal is to exploit
the non-intersection property of paths in the determinant of
a trek system to automatically find all paths from a to x that
do not pass through d.

Observe that a and b are two candidate instruments for
x, that is, they are non-descendants of {x} ∪ Sib(x).
Furthermore, all paths from the source nodes a and
b (red) to x′ in the flow graph cross either a′ or d′.
Computing the determinant between a, b and a′, d′ gives
det Σab,ad = (εaa)(εbbλbd), since there is only one valid
path set, a→ a′ and b→ d′.

Next, replace a′ with x′ in the determinant. That is:

det Σab,xd = (εaa(λax + λacλcx))(εbbλbd)

= δax.d det Σab,ad (4)
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Figure 6. In this graph, w and z are both candidate instruments,
but the min-cut between w, z (blue) and x′1, x′2, x′3 (red) is w, z′ -
with w as a source node.

We have therefore found that δax.d =
det Σab,xd

det Σab,ad
. Similarly,

δdx.a =
det Σab,ax

det Σab,ad
. What we have created here is the analog

of a standard instrumental set, which uses the set {a, b} as
instruments to identify the partial effects of a and d on x.

The formalization of instrumental sets for identifying partial
effects is given in Definition 3.1 and Theorem 3.2.

Definition 3.1. Given target node x, a set C ⊂ An(x),
and a set Z such that |Z| = |C|, then, if there is a non-
intersecting path-set between source nodes of Z and sink
nodes of C in Gflow, and all paths from source nodes Z to
sink node x′ cross through the sink nodes of C, the set Z is
said to be a Partial-Effect Instrumental Set (PEIS) relative
to C and x.

Theorem 3.2. If Z is a PEIS relative to C and x, then
the partial effects of C on x are identified, and given by

δcix.C =
det ΣZ,Cx

−i

det ΣZ,C
, where Cx−i is the ordered set C with

ci replaced by x.

Whenever there exists a PEIS Z relative to C and x, we call
C a feasible ancestral cutset of x, because C cuts x from
Z in the flow graph. Finally, we would like to emphasize
that, while in this work we mainly use the PEIS for the
purpose of constructing AVs, this is a general criterion for
finding partial effects, and can be used independently for
other purposes.

3.3. Auxiliary cutset: “best” feasible ancestral cutset

In general, given a target node x for which we want to create
an auxiliary variable x†, there will be multiple feasible an-
cestral cutsets we can choose from. For instance, in Fig. 4a,
d alone is a feasible ancestral cutset (using b as an instru-
ment). Clearly, however, an auxiliary variable constructed
by subtracting the effect of d alone cuts x from strictly less
variables than using {a, d}. Moreover, an x† constructed
in this way is not independent of y (a path through a still
exists), and can no longer be used as an AV to identify λxy .
It is useful, therefore, to define a notion of the best feasible

ancestral cutset C for generating an auxiliary variable x†.
This is called the auxiliary cutset.

Definition 3.2. The auxiliary cutset (AC) is the feasible
ancestral cutset C of x such that sink nodes of C intersect
all paths from sink nodes ofC ′ to x′ for all feasible ancestral
cutsets C ′ for x in G.

Definition 3.2 ensures that the AC of x results in an auxiliary
variable x† that has all the removed ancestral paths of any
other possible auxiliary varible x†

′
removed. In other words,

for every other feasible auxiliary variable x†
′
, we know that

the x† constructed using the AC is the “best”, meaning that,
if a path is removed using any other feasible ancestral cutset,
it is also removed using the auxiliary cutset.

To find the AC, we follow a procedure similar to the one
used in Kumor et al. (2019). The core idea can once again be
demonstrated on Fig. 5. In this flow graph, only a and b are
source nodes whose paths to x all go through the sink nodes
of Pa(x). This means that a and b are both “candidate
instruments"—only candidate instruments can possibly be
instruments of a feasible ancestral cutset. We then run a
vertex min-cut algorithm (Picard & Queyranne, 1982) from
{a, b} to the sink nodes of parents of x, namely {c′, d′}, and
find the min-cut that is closest to x. In this case, the min-cut
is a′, d′, meaning that {a, d} is the auxiliary cutset of x.

By using the closest vertex min-cut C between candidate in-
struments Z and sink nodes of parents of x, we guarantee all
the conditions of Definition 3.1 are satisfied automatically
by Z ′ and C, with Z ′ ⊆ Z, except for the requirement that
C consists entirely of sink nodes. An example where this is
violated is given in Fig. 6—the min-cut there includes source
node w. In such cases, we know that the associated node
is not part of any possible AC, so we can remove it from
candidacy, and rerun the min-cut algorithm. After removing
w, and then z, we are left with no possible AC in Fig. 6.
The general version of this procedure (which includes con-
cepts from Section 3.4) is implemented in Algorithm 1, and
always finds the AC if it exists.

Theorem 3.3. If there exists a feasible ancestral cutset for
x in G, then the AC exists, and is found by Algorithm 1.

3.4. Putting everything together: the ACID Algorithm

The final question remaining is: how can we use this newly
generated AV x† for identification? We want to both use
it recursively in Algorithm 1, and within our identification
algorithm (IC), to identify direct effects. When the set
of candidate instruments consists of original variables we
can easily find the AC using the standard flow graph, as
it was done in the example in Fig. 5. However, once the
candidate instruments have their own auxiliary cutsets, with
each candidate’s cutset being specific to that candidate, we
run into difficulties trying to encode non-intersecting paths.
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Algorithm 1 - AC: is given a graph, target vertex x, a set of
candidate instruments (which can themselves be AVs), a set
of identified structural parameters, and returns the Auxiliary
Cutset for x

Input: G, x, Z,Λ
Ghf ← AUXHALFFLOWGRAPH(G, x,Λ)
C ← ∅
repeat
Z ← {z ∈ Z : UNREMOVEDANCESTORS(z) ∩ C =
∅}
C ← vertex min-cut closest to x between Pa(x) and Z

until UNREMOVEDANCESTORS(Z) ∩ C = ∅
Z ′ ← {zi ∈ Z : zi has non-zero flow to ci ∈ C}
return (Z ′, C)

To understand why, we will use the concept of “unremoved
ancestors"

Definition 3.3. Let y be a target node with auxiliary cutset
C. The unremoved ancestors of y are all v ∈ An(y) such
that there exists a directed path from v to y in G that does
not cross any c ∈ C.

When using multiple AVs at once, e.g, z†1 and z†2, where each
AV has source-paths in the flow graph to its own unremoved
ancestors, some of which might be shared, it is unclear how
to efficiently find a path set from both AVs at once that does
not intersect. Theorem 3.4 shows we do not need to encode
paths in the source nodes at all.

Theorem 3.4. Let A be the unremoved ancestors of the AV
x†. If x† is a candidate instrument for y, then all elements
of the AV a† of a ∈ A are also candidate instruments for y.

Therefore, since all the unremoved ancestors of a candi-
date instrument are candidate instruments themselves, any
candidate with a path in the source nodes can be switched
with the candidate at which the path crosses over to the
sink nodes. This means we only need to encode edges from
source nodes to sink nodes, which can be done with the
Auxiliary Half-Flow Graph (Definition 3.4).

Definition 3.4. The auxiliary half-flow graph of G =
(V,D,B) given target node y and set of identified edges
Λ is the graph with vertices V ∪ V ′ containing the edges:

• i′ → j′ with weight λij if i→ j ∈ V and j 6= y

• i′ → y′ with weight λiy if i→ y ∈ V and λiy /∈ Λ

• i→ i′ with weight εii for all i ∈ V

• i→ j′ with weight εij if i↔ j ∈ B

This graph is referred to as Ghf . The nodes without ′ are
called “source” nodes, and the nodes with ′ are called “sink”
or “bottom” nodes.

Algorithm 2 - ACID: Given a graph, returns a set of identi-
fiable structural parameters.

Input: G
Λid ← ∅
v† = v ∀ vertices v ∈ G
repeat

for all vertices v ∈ G in topological order do
Z ← {z† : UNREMOVEDANCESTORS(z†) ∩
(Sib(y) ∪ {y}) = ∅, ∀z ∈ G}
Ghf ← AUXHALFFLOWGRAPH(G, x,Λid)
Λid ← Λid ∪ IC(Ghf , v, Z)
v∗ = v −

∑
λav∈Λid

λav
(Z ′, C)← AC(G, v, Z,Λid)

v† = v∗ −
∑
ci∈C

det Σ
Z′,Cv∗

i

ΣZ′,C
ci

end for
until no change in this iteration
return Λid

This completes the tools needed to specify the ACID algo-
rithm (Algorithm 2), which internally uses a version of the
IC algorithm (Kumor et al., 2019) adapted to make use of
partial-effect AVs and Half-Flow graphs.1

ACID unifies the state-of-the-art for identification in linear
SCMs. Moreover, the AC’s ability to block certain ances-
tors turns out to be the missing piece needed for auxiliary
variable methods to finally overtake methods based on con-
ditioning. Methods built upon conditioning such as the
gIS and qAVS have undetermined complexity, with several
NP-Hardness results for similar methods. ACID is the first
efficient identification algorithm that subsumes these ap-
proaches, obviating the discussion of their computational
complexity.

Theorem 3.5. If λab is identifiable with either the cAV, IC,
or qAVS criteria, then it is identifiable with ACID.

4. Decomposition of total effects
The ACID algorithm identifies individual direct effects. It
does not include total effects, which play an important
role in virtually all causal inference tasks, such as policy-
making, model testing, z-identification, and sensitivity anal-
ysis (Pearl, 2000; Bareinboim & Pearl, 2012; Chen et al.,
2017; Cinelli et al., 2019; Lee et al., 2019; Cinelli & Ha-
zlett, 2020). Unlike direct effects, the identification of total
effects in linear models has not received as much attention
and existing approaches fall broadly into two categories.

The first approach is to appeal to the foundational meth-
ods of identification, such as the instrumental variable, the
front-door, or the back-door criterion (or, more generally,

1For details of the modified IC, refer to the appendix.
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the do-calculus) (Pearl, 2000; Tian, 2004). While sound,
these methods ignore recent advances in the linear identi-
fication literature. A second approach is to decompose the
total effect of x on y into the sum of structural parameters
along all directed paths from x to y, and use state-of-the-art
identification algorithms for direct effects to identify all
structural parameters along these paths. This is sub-optimal,
as it misses cases in which the total effect is identifiable, but
some individual parameters are not.

To bridge the gap between these two extremes, we derive a
decomposition of total effects that relies on the identification
of only some of the direct effects of which it is composed.
The method makes use of ancestor and c-component decom-
positions to recursively break the total effect into a set of
partial effects and direct effects, which can then be attacked
with current identification algorithms for linear models.

Suppose our target query is the total effect δxy in Fig. 7a.
This effect is not identifiable non-parametrically, as there
are bidirected edges between x and its children. Second,
an approach based on current state-of-the-art methods that
relies on identifying all direct effects of δxy would equally
fail, since no existing method can identify λce.

We begin by defining the “top boundary” of a mixed com-
ponent as the parents of variables in a c-component that are
in other c-components.

Definition 4.1. Given graph G, with c-components
C1, ..., Ck, the top boundary Tb(Ci) of the c-component
Ci is defined as Tb(Ci) = Pa(Ci) \ Ci.

The concept of top boundary is useful for two reasons: first,
we can always identify the “total effect” in the mixed com-
ponent G′ of its top boundary on any other node in the
mixed component (this “total effect” in G′ may correspond
to a partial effect in the original model G); second, the total
effect of x on y can be decomposed as the sum of the total
effect of x in the nodes of the top boundary (in G) times the
“total effect” of the top boundary nodes in y in the mixed
component. This is formalized in Theorem 4.1.

Theorem 4.1. Let GAn(y) be the graph G with the non
ancestors of y removed. Let Cy be the c-component of y in
GAn(y) and G′ its corresponding mixed component. Then,
if x ∈ Cy , the total effect of x on y, δxy , can be decomposed
as, δxy = δ′xy +

∑
b∈Tb(Cy) δxbδ

′
by otherwise, if x /∈ Cy,

we have, δxy =
∑
b∈Tb(Cy) δxbδ

′
by where Tb(Cy) is the

top boundary of the c-component Cy and δ′by is the total
effect of node b ∈ Tb(Cy) on y in the mixed component G′.
Moreover, all δ′by for b ∈ Tb(Cy) are identified.

The recursive application of this idea enables us to iteratively
identify parts of the total effect via a combination of ances-
tral and c-component decompositions, leaving only a portion
of the path to be identified using algorithms specialized for

x
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Figure 7. In (a), we can reduce δxy into queries on δxe, δxd, δxf
in (b), and then to λxa and λxb by iteratively decomposing the
model.

Algorithm 3 - TED: Given a graph and a target total-effect
δxy , returns a set of direct effects that suffice to identify δxy

Input: G, δxy
GAn ← An(y)
G′ ← MIXEDCOMPONENT(GAn, y)
B ← TOPBOUNDARY(G′) ∩An(y,G′)
if x ∈ G′ and x /∈ B then

return {λab : ∀λab ∈ δ′xy} ∪
⋃
b∈B TED(G, δxb)

else
return

⋃
b∈B TED(G, δxb)

end if

direct effects. In our example, note that h is not an ancestor
of y, therefore GAn(y) does not include h. This allows us to
decompose the pruned graph into the the mixed component
G′ of the c-component {y, g}. Since the total effect of x
on y needs to necessarily pass through the top boundary of
G′, we have that, as per Theorem 4.1, the total effect can be
decomposed as δxy = δxeδ

′
ey + δxdδ

′
dy + δxfδ

′
fy, and all

direct effects starting from the top boundary in the mixed
component (δ′) can be identified. The query δxy is then
broken down into three smaller subqueries, δxe, δxd, δxf .

Now we can apply Theorem 4.1 for each of the remaining
queries (shown in Fig. 7b). Pruning the non-ancestors of f
leaves us with just f , and δxf = 0. Looking at e, note that
f is not its ancestor, and the c-component decomposition al-
lows identification of δ′ae and δ′be, with resulting subqueries
δxa and δxb. Applying the same logic to d leads us to
identify δ′ad and δ′bd, with identical remaining subqueries.
This leaves only two directed edges left to be identified
δxa = λxa and δxb = λxb. We have thus reduced the iden-
tification of the total effect of δxy to the identification of
λxa and λxb only, both of which can be solved using f as
an instrumental variable. The full algorithm for the total
effect decomposition is given in Algorithm 3, which given a
target total-effect δxy , returns a set of direct effects that are
sufficient for identifying the desired quantity.
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5. Conclusion
We developed an efficient algorithm for linear identification
that subsumes the current state-of-the-art, unifying disparate
approaches found in the literature. In doing so, we also intro-
duced a new method for identification of partial effects, as
well as a method for exploiting those partial effects via aux-
iliary variables. Finally, we devised a novel decomposition
of total effects allowing previously incompatible methods
to be combined, leading to strictly more powerful results.
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