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Abstract. We study conditions under which the addition of variables to a re-
gression equation can turn a previously statistically insignificant result into a
significant one. Specifically, we characterize the minimum strength of asso-
ciation required for these variables—both with the dependent and indepen-
dent variables, or with the dependent variable alone—to elevate the observed
t-statistic above a specified significance threshold. Interestingly, we show that
it is considerably difficult to overturn a statistically insignificant result solely
by reducing the standard error. Instead, included variables must also alter the
point estimate to achieve such reversals in practice. Our results can be used
for sensitivity analysis and for bounding the extent of p-hacking, and may
also offer algebraic explanations for patterns of reversals seen in empirical
research, such as those documented by Lenz and Sahn (2021).
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1. INTRODUCTION

Applied researchers are often confronted with unex-
pected statistically insignificant estimates of linear regres-
sion coefficients. This situation may lead to the addition
of variables to the regression equation with the intent to
reduce standard errors or to account for factors that could
be masking the target relationship of interest (Cinelli, For-
ney and Pearl, 2022). If statistical significance remains
elusive, researchers may naturally speculate whether there
exist key variables that remained unmeasured but could
have overturned statistical insignificance had they been
accounted for in the analysis. As statistical significance
is often a key factor for publication, such practices and
concerns frequently arise in both experimental and obser-
vational studies.

Consider, for example, a randomized controlled trial
(RCT) in which a researcher uses ordinary least squares
(OLS) to estimate the average effect of a treatment on an
outcome. Here, confounding biases do not exist by de-
sign but adjusting for covariates may still help with pre-
cision. If the initial result is not statistically significant,
this may lead to the inclusion of pre-treatment covari-
ates in the regression equation to potentially attain statis-
tical significance. In observational studies, beyond preci-
sion gains, covariate adjustment may be an essential tool

University of Washington, Seattle, USA (e-mail:
dltsao@uw.edu). University of Washington, Seattle, USA
(e-mail: rflperry@uw.edu). University of Washington, Seattle,
USA (e-mail: cinelli@uw.edu).

for obtaining valid estimates of the target of inference.
It may help mitigate confounding biases, block indirect
pathways, estimate conditional effects, or address vari-
ous other methodological concerns—all of which could
provide legitimate reasons for introducing covariates that
reverse an initially insignificant result, or to ask whether
unobserved variables could have done so.

However, despite the many valid reasons for covariate
adjustment, applied researchers often fail to adequately
justify their choice of control variables. For example, in
the American Journal of Political Science, Lenz and Sahn
(2021) found that over 30% of articles relied on the in-
clusion of covariates to turn previously statistically in-
significant findings into significant ones. According to
Lenz and Sahn (2021), none of the articles justified this
choice, nor disclosed these reversals. In fact, the practice
of testing various model specifications with the intention
of obtaining statistically significant results is commonly
referred to as ‘p-hacking’ (Simonsohn, Nelson and Sim-
mons, 2014). Extensive surveys and meta-analysis of pub-
lished p-values suggest that p-hacking may be prevalent
across disciplines (Brodeur et al., 2016; Vivalt, 2019).

Under what conditions can such reversals of statisti-
cal insignificance occur? Can we establish bounds on the
extent of ‘p-hacking’? And what observable patterns in
the data should emerge when these reversals take place?
In this short communication, we provide simple alge-
braic answers to these questions in the context of OLS.
Building on recent results from Cinelli and Hazlett (2020,
2022), we first characterize the maximum change in the
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t-statistic that covariates with bounded strength can pro-
duce. We then derive the minimum strength of associa-
tion that such covariates must have—whether with both
the dependent and independent variables or with the de-
pendent variable alone—to elevate the observed t-statistic
above a given statistical significance threshold. Lastly, we
provide an empirical example. These results can be ap-
plied to conduct sensitivity analyses against unobserved
‘suppressors’ and to bound the extent of p-hacking aris-
ing due to the choice of control variables. It may also offer
algebraic explanations for patterns of significance rever-
sals observed in empirical research.

2. PRELIMINARIES

2.1 Problem setup

Let Y be an (n × 1) vector containing the dependent
variable for n observations; D be an (n × 1) indepen-
dent variable of interest and X be an (n × p) matrix of
observed covariates including a constant. Consider the re-
gression equation

Y = λ̂rD+Xβ̂r + ϵ̂r,(1)

where λ̂r , β̂r are the OLS estimates of the regression co-
efficients of Y on D and X, and ϵ̂r is the corresponding
(n× 1) vector of residuals.

Let ŝe(λ̂r) be the estimated classical (homoskedastic)
standard error of λ̂r . Under the classical linear regres-
sion model, the t-statistic for testing the null hypothesis
H0 : λr = λ0, i.e.,

tr :=
λ̂r − λ0

ŝe(λ̂r)
,(2)

follows a t-distribution with df := n − p − 1 degrees of
freedom. Denoting by t∗α,df the (1− α/2) quantile of this
distribution, the t-statistic (2) is considered “statistically
significant with significance level α" if the absolute value
of tr exceeds that of t∗α,df. Note that the t-statistic depends
on the choice of λ0. For simplicity, we use the notation
tr with the understanding that a particular λ0 has been
chosen.

Now suppose the t-statistic (2) is insignificant. Let Z be
an (n × 1) vector of a (potentially unobserved) covari-
ate whose inclusion in the regression equation we wish
to assess. In contrast to the ‘restricted’ regression in (1),
we now consider the long regression equation of Y on D
after adjusting for both X and Z ,

Y = λ̂D+Xβ̂ + γ̂Z + ϵ̂.(3)

Here, the t-statistic for testing null hypothesis H0 : λ= λ0

is

t :=
λ̂− λ0

ŝe(λ̂)
(4)

where λ̂ and ŝe(λ) have the same interpretation as before,
just now with an additional adjustment for Z . We wish to
quantify the properties that Z needs to have such that the
t-statistic in (4) will be statistically significant.

2.2 Omitted variable bias formulas

Comparing (2) with (4), observe that the (absolute) rel-
ative change in the t-statistic can be decomposed as the
product of the relative change in the bias and the relative
change in the standard error:∣∣∣∣ ttr

∣∣∣∣=
∣∣∣∣∣ λ̂− λ0

λ̂r − λ0

∣∣∣∣∣×
(

ŝe(λ̂r)

ŝe(λ̂)

)
.(5)

Concretely, for Z to double the t-statistic, it must either
double the absolute difference between the point estimate
and λ0, halve the standard errors, or achieve some combi-
nation of both.

To characterize these changes in terms of how much
residual variation Z explains of D and Y , we refer to the
following result from Cinelli and Hazlett (2020).

THEOREM 1 (Cinelli and Hazlett, 2020). Let R2
Y∼Z|DX

denote the sample partial R2 of Y with Z after adjusting
for D and X, and let R2

D∼Z|X < 1 denote the sample
partial R2 of D with Z after adjusting for X. Then,

|λ̂r − λ̂|=

√√√√R2
Y∼Z|DXR2

D∼Z|X

1−R2
D∼Z|X︸ ︷︷ ︸

BF

×ŝe(λ̂r)×
√

df(6)

and

ŝe(λ̂) =

√√√√1−R2
Y∼Z|DX

1−R2
D∼Z|X︸ ︷︷ ︸

SEF

×ŝe(λ̂r)×

√
df

df−1
.(7)

To aid interpretation, we call the terms BF in (6) and SEF
in (7) the “bias factor” and the “standard error factor”
of Z , respectively.

We can use Theorem 1 to write the absolute value of
the t-statistic (4) as a function of R2

Y∼Z|DX and R2
D∼Z|X,

i.e.,

t(R2
Y∼Z|DX,R2

D∼Z|X) = |(λ̂r−λ0)±BF×ŝe(λ̂r)×
√

df|
ŝe(λ̂r)×SEF×

√
df

df −1

,

where the sign of the bias term, denoted by ±, depends
on whether λ̂r > λ̂ or vice-versa. This re-formulation al-
lows us to assess how Z affects inferences for any pos-
tulated pair of partial R2 values {R2

Y∼Z|DX,R2
D∼Z|X},

and it will help us determine the conditions under which
the addition of Z turns a previously statistically insignifi-
cant result into a significant one.
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To set the stage for upcoming results, we note an im-
mediate but important corollary of Theorem 1: for a fixed
observed t-statistic and fixed strength of Z , the impact
that Z has on the relative bias depends on the sample size,
whereas the impact it has on the relative change in stan-
dard errors does not. The relative change in the bias is
given by

λ̂− λ0

λ̂r − λ0

= 1± BF
tr

×
√

df.

Notice that for fixed tr and fixed {R2
Y∼Z|DX,R2

D∼Z|X}
(which sets BF), larger sample sizes yield larger relative
changes in the distance of the estimate from the null hy-
pothesis. Conversely, the relative change in the standard
error is given by

ŝe(λ̂r)

ŝe(λ̂)
=

1

SEF
×
√

df−1

df
≈ 1

SEF
(8)

and is thus unaffected by the sample size. As an example,
halving standard errors is equally challenging in a sample
of 100 as in a sample of 1,000,000; in contrast, doubling
point estimates becomes much easier as the sample size
grows. This distinction will become clearer as we con-
tinue with our analysis.

3. RESULTS

In this section we present two main results. First,
given upper-bounds on R2

Y∼Z|DX and R2
D∼Z|X, we de-

rive the ‘maximum adjusted t-statistic’ which quantifies
the maximum possible value that t(R2

Y∼Z|DX,R2
D∼Z|X)

can attain after including Z in the regression equa-
tion. Then we solve for the minimum upper bound
on {R2

Y∼Z|DX,R2
D∼Z|X}, hereby referred to as the

“strength of Z", such that it guarantees that the maxi-
mum adjusted t-statistic exceeds the desired significance
threshold.

In what follows, it is useful to define the quantities

fr := |tr|/
√

df and f∗
α,df := t∗α,df/

√
df,

which normalize the observed t-statistic and the critical
threshold by the degrees of freedom. These definitions
greatly simplify formulas and derivations.

3.1 On the maximum adjusted t-statistic

We start by defining the maximum value that the t-
statistic (4) could attain given Z with bounded strength.

DEFINITION 1 (Maximum adjusted t-statistic). For a
fixed null hypothesis H0 : λ = λ0, significance level α,
and upper bounds on R2

Y∼Z|DX and R2
D∼Z|X, denoted by

R2 = {Rmax
Y ,Rmax

D }, we define the maximum adjusted t-
statistic as

tmax
R2 := max

R2
Y ∼Z|DX,R2

D∼Z|X

t(R2
Y∼Z|DX,R2

D∼Z|X)

s.t. R2
Y∼Z|DX ≤Rmax

Y ,R2
D∼Z|X ≤Rmax

D .

The solution to the above problem has a simple closed-
form characterization.

THEOREM 2 (Closed-form solution to tmax
R2 ). Let

Rmax
Y < 1. Then,

tmax
R2 =

fr
√

1−R∗2
D∼Z|X+

√
R∗2

Y ∼Z|DX
R∗2

D∼Z|X√
(1−R∗2

Y ∼Z|DX
)/(df−1)

where

{R∗2
Y∼Z|DX,R∗2

D∼Z|X}= {Rmax
Y ,Rmax

D }

if f2
r <Rmax

Y (1−Rmax
D )/Rmax

D and

{R∗2
Y∼Z|DX,R∗2

D∼Z|X}=
{
Rmax

Y ,
Rmax

Y

f2
r+Rmax

Y

}
otherwise.

If tmax
R2 < t∗α,df−1, then we can be assured that no Z

with the specified maximum strength would be able to
overturn an insignificant result. On the other hand, if
tmax
R2 > t∗α,df−1, we know that there exists at least one Z

with strength no greater than R2 that is capable of bring-
ing the t-statistic above the specified threshold.

REMARK 1. Note that the optimal value of R2
Y∼Z|DX

always reaches the upper bound Rmax
Y , while R2

D∼Z|X
may either reach its upper bound Rmax

D or result in the
interior point solution Rmax

Y

f2
r+Rmax

Y
.

REMARK 2. It is always necessary to constrain the
strength of Z with respect to Y in order to obtain a fi-
nite solution for tmax

R2 . If Rmax
Y = 1, then as R2

Y∼Z|DX
approaches one, the standard error approaches zero and
the t-statistic grows without bounds.

REMARK 3. In contrast, it is possible to leave R2
D∼Z|X

unconstrained. Increasing R2
D∼Z|X has two counterbal-

ancing effects on the t-statistic. On one hand, it can
change the point estimate, as described by (6), in a di-
rection that is favorable for rejecting H0 : λ= λ0. On the
other hand, it also increases the standard error due to the
variance inflation factor in (7) (i.e. the denominator of
the SEF), which eventually counter-balances and then ex-
ceeds the benefit of the change in estimate. Thus, setting
Rmax

D = 1 will always result in an interior point solution
for R2

D∼Z|X.

Of course, there naturally could be multiple latent vari-
ables instead of a single one, and so one might wonder
about the case when Z takes the form of a matrix rather
than a vector. The following theorem demonstrates that it
is sufficient to consider a single unmeasured latent vari-
able, up to a correction in the degrees of freedom.
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THEOREM 3 (tmax
R2 for matrix Z). Let Z be an

(n × m) matrix of covariates. Then the solution to tmax
R2

is the same as that of Theorem 2, save for the adjustment
in the degrees of freedom, which now is df−m.

In what follows, for simplicity we keep Z as a vector
with the understanding that all results still hold for ma-
trix Z. But before moving forward, there is an interesting
corollary of the previous result. It places limits on the ex-
tent of p-hacking given observed covariates X.

COROLLARY 1 (Upper bound on p-hacking). For ob-
served covariates X, let R2

Y∼X|D,R2
D∼X denote the

strengths of the associations of X with Y and D, re-
spectively. Let tY∼D|XS

denote the t-statistic for the co-
efficient of the regression of D on Y when adjusting for
the subset of covariates XS (consisting of a subset of the
columns of X). Then for any XS ,

tY∼D|XS
≤ tmax

R2 ,

where tmax
R2 is the solution of Theorem 2 using tr = tY∼D

and R2 = {R2
Y∼X|D,R2

D∼X}.

When the number of covariates is small, it is feasible
to run all possible regressions to identify the exact max-
imum t-statistic across all specifications. However, when
the number of covariates is large, this exhaustive approach
becomes impractical. For example, with p= 40, there are
240 (approximately 1 trillion) possible specifications. In
such a case, tmax

R2 offers a simple upper bound on the max-
imum extent of p-hacking without the need to run all 1
trillion regressions.

EXAMPLE 1. Let p= 40, df = 100 and the t-statistic
of the regression of Y on D be equal to 1. Then, if
{R2

Y∼X|D,R2
D∼X} = {0.08,0.08}, Corollary 1 assures

us that none of the 1 trillion specifications can yield a t-
statistic greater than 1.83.

REMARK 4. Note that tmax
R2 is achievable when the

only constraint on the variables to be included is their
maximum explanatory power. For any given set of ob-
served covariates, tmax

R2 is a potentially loose upper bound.
It is possible to tighten this bound by applying the corol-
lary iteratively within subsets of regressions. Obtaining
tight bounds without running all of the 2p possible regres-
sions remains an open problem.

3.2 On the minimal strength of Z to reverse
statistical insignificance

Equipped with the notion of the maximum adjusted
t-statistic, we can now characterize the minimum strength
of Z necessary to obtain a statistically significant result.
Following the convention of Cinelli and Hazlett (2020),
we call our metrics “robustness values” for insignificance.
They quantify how “robust” an insignificant result is to
the inclusion of covariates in the regression equation.

3.2.1 Extreme robustness value for insignificance. As
highlighted in Remark 2, the parameter R2

Y∼Z|DX is es-
sential for assessing the potential of Z to bring about a
significant result, as it always needs to be bounded. Thus
we begin by characterizing the minimal strength of asso-
ciation of Z with Y alone in order to achieve significance.

DEFINITION 2 (Extreme Robustness Value for Insignif-
icance). For fixed Rmax

D ∈ [0,1], the extreme robustness
value for insignificance, XRVIR

max
D

α , is the minimum up-
per bound on R2

Y∼Z|DX such that tmax
R2 is large enough

to reject null hypothesis H0 : λ = λ0 at specified signifi-
cance level α, i.e.,

XRVIR
max
D

α := min{XRVI : tmax
XRVI,Rmax

D
≥ t∗α,df−1}.

For a fixed bound on R2
D∼Z|X, the XRVIR

max
D

α describes
how robust an insignificant result is in terms of the min-
imum explanatory power that Z needs to have with Y
in order to overturn it. Theorem 7 in the appendix pro-
vides an analytical expression for XRVIR

max
D

α given ar-
bitrary Rmax

D ∈ [0,1]. Here we focus on two important
cases: Rmax

D = 0 and Rmax
D = 1.

Starting with Rmax
D = 0, we first consider the scenario

where the point estimate remains unchanged, and any in-
crease in the t-statistic occurs solely due to a reduction in
the standard error. That is, XRVI0α quantifies how much
variation a control variable Z that is uncorrelated with
D must explain of the dependent variable Y in order to
overturn a previously insignificant result. This turns out
to have a remarkably simple and insightful characteriza-
tion.

THEOREM 4 (Closed-form expression for XRVI0α).
Let fr > 0, then the analytical solution for XRVI0α is

XRVI0α =


0, if f∗

α,df−1 < fr,

1−

(
fr

f∗
α,df−1

)2

, otherwise.

If fr = 0, there is no value of R2
Y∼Z|DX capable of over-

turning an insignificant result.

REMARK 5. It is useful to understand how XRVI0α
changes as the sample size grows, when keeping the ob-
served t-statistic and the significance level fixed.

XRVI0α ≈ 1−

(
tr

t∗α,df−1

)2

df−−−→
∞

1−
(
tr
z∗α

)2

,

where here df−−−→
∞

denotes the limit as df goes to infin-

ity and z∗α denotes the (1 − α/2) quantile of the stan-
dard normal distribution. In other words, when consid-
ering only a reduction in the standard error, the amount
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of residual variation that Z must explain of Y in order to
overturn an insignificant result depends solely on the ratio
of the observed t-statistic to the critical threshold. Apart
from changes in the critical threshold due to degrees of
freedom— which eventually converges to z∗α—this value
remains constant regardless of sample size.

EXAMPLE 2. Consider testing the null hypothesis of
zero effect with an observed t-statistic of 1 and 100 de-
grees of freedom. The percentage of residual variation of
Y that Z needs to explain in order to bring a t-statistic of
1 to the critical threshold of 2, only through a reduction
in the standard error, is

XRVI0α ≈ 1−
(
1

2

)2

= 1− (1/4) = 3/4 = 75%.

That is, if we are considering a reduction in the standard
error alone, Z needs to explain at least 75% of the varia-
tion of Y in order to elevate the observed t-statistic to 2.
Notably, this number is (virtually) the same across sample
sizes, be it df = 100, df = 1,000 or df = 1,000,000. As
variables that explain 75% of the variation of Y are rare in
most settings, this simple fact suggests that it should also
be rare to see a reversal of significance driven by gains
in precision when tr = 1. We return to this point in the
discussion.

The previous result describes how to achieve statistical
significance via precision gains. We now move to the case
with Rmax

D = 1. As noted in Remark 3, this is the scenario
in which we impose no constraints on the strength of asso-
ciation between Z and D. In this sense, XRVI1α computes
the bare minimum amount of variation that Z needs to ex-
plain of Y in order to reverse an insignificant result. Any
variable that does not explain at least (100 × XRVI1α)%
of the variation of Y is logically incapable of making the
t-statistic significant.

THEOREM 5 (Closed-form expression for XRVI1α).
The analytical solution for XRVI1α is:

XRVI1α =


0, if f∗

α,df−1 < fr,
f∗2
α,df−1 − f2

r

1 + f∗2
α,df−1

, otherwise.

REMARK 6. Contrary to the previous case, we ob-
serve the following behaviour as the sample size grows,

XRVI1α ≈

(
t∗2α,df−1 − t2r
df+t∗2α,df−1

)
df−−−→
∞

0.

Therefore, if we allow Z to change point estimates, then
for a fixed observed t-statistic, the minimal strength of
Z with Y to bring about a reversal tends to zero as the
sample size grows to infinity.

EXAMPLE 3. Consider again testing the null hypoth-
esis of zero effect with an observed t-statistic of 1 and 100
degrees of freedom. If we allow Z to be arbitrarily associ-
ated with D, it needs only to explain 2.9% of the residual
variation of Y in order to bring the t-statistic to 2:

XRVI1α ≈ 22 − 12

100 + 22
=

3

104
= 2.9%.

Also note that any Z that explains less than 2.9% of the
variation of Y is logically incapable of bringing about
such change. Corroborating our previous analysis, the Z
that achieves this must do so via an increase in point es-
timate, and not via a decrease in standard errors. As per
Theorem 2, the optimal value of the association with D is
R2

D∼Z|X ≈ 74%. Notice that SEF ≈ 1.94, meaning that
the inclusion of Z almost doubles the standard error, in-
stead of reducing it. This, however, is compensated by
the fact that Z increases the point estimate by a factor of
1 + BF×

√
df = 3.88, thus doubling the t-statistic despite

the loss in precision.

EXAMPLE 4. For the same observed t-statistic of 1,
consider a sample size that is an order of magnitude
larger, say, df = 1,000. The minimum residual variation
that Z needs to explain of Y then reduces to 0.29%:

XRVI1α ≈ 22 − 12

1000 + 22
=

3

1004
= 0.29%.

As per Theorem 2, this Z has an association with D of
R2

D∼Z|X ≈ 75%. Here, we have the same situation as be-
fore: the standard error doubles while the point estimate
increases by a factor of four, thus doubling the t-statistic.

3.2.2 Robustness value for insignificance. While in the
previous section we investigated the minimal bound on
R2

Y∼Z|DX alone in order to revert an insignificant result,
here we investigate the minimal bound on both R2

Y∼Z|DX

and R2
D∼Z|X simultaneously.

DEFINITION 3 (Robustness Value for Insignificance).
The robustness value for insignificance, RVIα, is the min-
imum upper bound on both R2

Y∼Z|DX and R2
D∼Z|X such

that tmax
R2 is large enough to reject the null hypothesis

H0 : λ= λ0 at specified significance level α. That is,

RVIα := min{RVI : tmax
RVI,RVI ≥ t∗α,df−1}.

Note that RVIα provides a convenient summary of the
minimum strength of association that Z needs to have,
jointly with D and Y , in order to bring about a statistically
significant result. Any Z that has both partial R2 values
no stronger than RVIα cannot reverse a statistically in-
significant finding. On the other hand, we can always find
a Z with both partial R2 values at least as strong as RVIα
that does so. The solution of this problem is given in the
following result.
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THEOREM 6 (Closed-form expression for RVIα). The
analytical solution for RVIα is

RVIα =


0, if f∗

α,df−1 < fr,
1
2 (

√
f4
∆+4f2

∆−f2
∆) , if fr < f∗

α,df−1 < f−1
r ,

XRVI1α, otherwise

where f∆ := f∗
α,df−1 − fr .

REMARK 7. The first case in Theorem 6 occurs when
the t-statistic for H0 : λ = λ0 is already statistically sig-
nificant, even when losing one degree of freedom. The
second case occurs when both constraints on R2

D∼Z|X
and R2

Y∼Z|DX are binding. The third case is the interior
point solution, as defined in Theorem 5, where only the
constraint on R2

Y∼Z|DX is binding.

Notice that in the second solution of RVIα, we have
R2

D∼Z|X = R2
Y∼Z|DX; thus, SEF = 1 and standard er-

rors remain unchanged. Therefore, RVIα represents the
minimal strength of Z needed to achieve statistical sig-
nificance via a change in the point estimate alone, use-
fully complementing XRVI0α, which quantifies the mini-
mal strength of Z needed solely through a reduction in
standard errors.

REMARK 8. We recover the XRVI as the solution
to RVI if and only if the conditions (1) f∗

α,df−1 > f−1
r

and (2) f∗
α,df−1 > fr both hold. This rarely occurs. To

see this more clearly, note that condition (1) simplifies to√
df−1

√
df < tr × t∗α,df−1, or, approximately,

df ⪅ tr × t∗α,df−1

which only occurs when there are few degrees of freedom,
for typical critical thresholds (e.g. 1.96).

REMARK 9. As with XRVI1α, for fixed tr and signif-
icance level α, we observe the same behaviour for RVIα
as the sample size grows,

RVIα ≈ 1

2

√ t4∆
df2

+ 4
t2∆
df

− t2∆
df

 df−−−→
∞

0,

where t∆ = t∗α,df−1− tr . Therefore, the larger the sample
size, any change in the point estimate will eventually be
sufficiently strong to bring about statistical significance.

REMARK 10. The statistics we introduced here obey
the following ordering,

XRVI1α ≤ RVIα ≤ XRVI0α.

This follows directly from their definitions, as each case
represents a constrained minimization problem and the
constraint becomes stricter as we move from Rmax

D = 1
to Rmax

D = 0. Moreover, XRVIRVIα
α = RVIα.

EXAMPLE 5. Continuing with the case where the t-
statistic is 1, we obtain RVIα ≈ 9.5% when df = 100 and
RVIα ≈ 3% when df = 1,000. In both cases, the inflation
of the t-statistic by a Z that attains the optimal strength is
driven solely by changes in the point estimate.

4. EMPIRICAL EXAMPLE

We demonstrate the use of our metrics in an empiri-
cal example that estimates the effect of a vote-by-mail
policy in various outcomes (Amlani and Collitt, 2022).
This work includes an analysis for the effect of a US
county’s vote-by-mail (VBM) policy on the Republican
presidential vote share (dependent variable Y ) in the 2020
election. There are 5 treatment conditions concerning
the VBM policy change from 2016 to 2020, of which
the authors are specifically interested in the condition:
no-excuse-needed (in 2016) to ballots-sent-in (in 2020),
which we will refer to as condition-1. The authors fit
a differences-in-differences model using OLS, adjusting
for various covariates including an indicator for battle-
ground states and the median age and the median income
of residents in the county. Notably, the interaction term
for condition-1 × year (independent variable D) is not
statistically significant at the 5% level: the t-statistic is
tr = 0.12 with 4,307 degrees of freedom.

4.1 Robustness to unobserved suppressors

The authors were concerned that the lack of signifi-
cance for the coefficient of interest could have been due
to suppression effects of unobserved variables. To ad-
dress this, they use the formulas of Theorem 1 to examine
whether different hypothetical values for the strength of Z
yield a statistically significant t-statistic. Here we comple-
ment their analysis by providing the three proposed met-
rics, XRVI1α, RVIα and XRVI0α.

The results are displayed in Table 1. We find that any la-
tent variable Z that explains less than 2.77% of the resid-
ual variation of both Y and D (RVIα = 2.77%) would
not be sufficiently strong to make the estimate statisti-
cally significant. Moreover, if we impose no constraints
on R2

D∼Z|X, then Z needs to explain at least 0.089%
of the variation of Y in order to attain such a reversal
(XRVI1α = 0.089%) . Finally, our analysis shows that a
reversal of significance solely due to gains in precision is
virtually impossible: a Z orthogonal to D would need to
explain a remarkable 99.6% of the variation of Y in or-
der to overturn the insignificant result (XRVI0α = 99.6%).

Estimate Std. Error t-statistic XRVI1α RVIα XRVI0α

0.103 0.873 0.118 0.089% 2.77% 99.6%

Note: df = 4307, λ0 = 0, α= 0.05.

TABLE 1
Robustness values for insignificance for the vote-by-mail policy study.
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To put these statistics in context, a latent variable with
the same strength of association with D and Y as that of
the battleground state indicator would only explain 0.6%
of the residual variation in Y and 0.27% of the residual
variation in D. Since both of these numbers are below the
RVIα value of 2.77%, we can immediately conclude that
adjusting for a latent variable Z of similar strength to this
observed covariate would not be sufficient to overturn the
insignificant result.

4.2 Robustness to subsets of controls

We now illustrate how tmax
R2 can be used to understand

whether one can easily rule out the possibility of obtain-
ing a statistically significant t-statistic when adjusting for
different subsets of control variables. The authors present
three model specifications, all of which found the effect
of interest to be statistically insignificant. However, could
there be a specification where the results turn out to be
significant? Here we consider all possible variations be-
tween their base model and an expanded model that in-
cludes 12 additional control variables. This amounts to
212 = 4,096 possible regressions. Applying the results of
Corollary 1, we obtain tmax

R2 ≈ 20.7, meaning that we can-
not rule out that there exists a specification where the in-
teraction term becomes significant. Given the relatively
small number of combinations, we can actually compute
the ground truth to verify—and, indeed there are 510
models that yield a statistically significant result.

5. DISCUSSION

The algebra of OLS both imposes strong limits on and
reveals clear patterns in how reversals of statistical in-
significance occur. The first lesson that emerges from our
analysis is that reversals of low t-statistics are unlikely
to occur through reductions in standard errors alone. As
shown in the first row of Table 2, even with a t-statistic
of 1.75, one would need to explain at least 20% of the
residual variation in Y to achieve statistical significance
at the 5% level solely through a reduction in standard er-
rors. Elevating a t-statistic of .5 to statistical significance
requires explaining a remarkable 93% of the residual vari-
ation of Y . Such strong associations with the response
variable are not typically common in many empirical ap-
plications.

A second consequence of our findings is that, in RCTs,
it should be difficult to observe reversals of low t-statistics

tr 0.25 0.50 .75 1.00 1.25 1.50 1.75

XRVI0α=0.05 0.98 0.93 0.85 0.74 0.59 0.41 0.20

XRVIq.95α=0.05 0.41 0.32 0.24 0.16 0.10 0.05 0.01
TABLE 2

Approximate values of XRVI for various values of tr .

due to covariate adjustments. Since covariates in such tri-
als typically have zero association with the treatment by
design (barring sampling errors), their inclusion is un-
likely to significantly shift the point estimate. A back-of-
the-envelope calculation illustrates this point: if D is ran-
domized, then dfR2

D∼Z|X follows an approximate chi-
square distribution with one degree of freedom. Thus, let-
ting q.95 denote the (approximate) 95th percentile of real-
izations of R2

D∼Z|X, we can calculate XRVIq.950.05 for var-
ious values of tr . These values are recorded in the sec-
ond line of Table 2. With the exception of tr = 1.75 and
tr = 1.5, the values of R2

Y∼Z|DX required to reverse sta-
tistical insignificance remain moderate to large, suggest-
ing that such reversals should be uncommon in practice.

Finally, and perhaps counter-intuitively, even when in-
cluded variables are highly predictive of the response, re-
versals of insignificance are still typically driven by shifts
in the point estimate rather than by reductions in standard
errors. To illustrate, consider the usual critical threshold
of t∗α,df−1 ≈ 2 and any observed t-statistic below 1. Then,
if R2

Y∼Z|DX ≤ .5, it is impossible to obtain a reversal
that is not mainly driven by changes in point estimate.
In other words, any post-mortem analysis of such signifi-
cance reversals, using decompositions like (5), must nec-
essarily find that the relative change in bias is larger than
the relative change in standard errors. Overall, these re-
sults closely mirror empirical patterns of reversals of sta-
tistical insignificance observed in applied research, such
as those documented by Lenz and Sahn (2021), and may
offer a purely algebraic explanation for at least some of
these patterns.

APPENDIX: DEFERRED PROOFS

PROOF OF THEOREM 2. From (6) and (7), the magni-
tude of the t-statistic for H0 : λ= λ0 can be written as a
function of R2

Y∼Z|DX and R2
D∼Z|X,

t(R2
Y∼Z|DX,R2

D∼Z|X) = |(λ̂r−λ0)±BF×ŝe(λ̂r)×
√

df|
ŝe(λ̂r)×SEF×

√
df

df −1

.(9)

We wish to maximize t(R2
Y∼Z|DX,R2

D∼Z|X) under
the posited bounds R2

Y∼Z|DX ≤ Rmax
Y and R2

D∼Z|X ≤
Rmax

D . That is, we want to solve the constrained maxi-
mization problem,

tmax
R2 = max

R2
Y ∼Z|DX

,R2
D∼Z|X

t(R2
Y∼Z|DX,R2

D∼Z|X)(10)

such that R2
Y∼Z|DX ≤Rmax

Y , R2
D∼Z|X ≤Rmax

D . First no-
tice that we should choose the direction of the bias that
increases the magnitude of the difference (λ̂ − λ0). If
(λ̂r − λ0) > 0 then we should add the BF term in (9),
whereas if (λ̂r − λ0) < 0 then the bias should be sub-
tracted. Both cases yield the same (simplified) objective
function as argued below.
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Suppose that λ̂r > λ0. Then the absolute value from
(10) can be dropped and the objective function becomes

λ̂r−λ0+BF×ŝe(λ̂r)×
√

df

ŝe(λ̂r)×SEF×
√

df
df −1

= fr×ŝe(λ̂r)+BF×ŝe(λ̂r)

ŝe(λ̂r)×SEF×
√

1
df −1

.

Now suppose that λ̂r < λ0. We again have,
λ0−λ̂r+BF×ŝe(λ̂r)×

√
df

ŝe(λ̂r)×SEF×
√

df
df −1

= fr×ŝe(λ̂r)+BF×ŝe(λ̂r)

ŝe(λ̂r)×SEF×
√

1
df −1

.

Therefore, after some algebraic manipulation, the max-
imum t-value in (10) will be of the form,

tmax
R2 =

fr
√

1−R∗2
D∼Z|X+

√
R∗2

Y ∼Z|DX
R∗2

D∼Z|X√
(1−R∗2

Y ∼Z|DX
)/(df−1)

where R∗2
Y∼Z|DX, R∗2

D∼Z|X are the values of R2
Y∼Z|DX

and R2
D∼Z|X that optimize (10).

We now find analytical expressions for the optimizers
R∗2

Y∼Z|DX, R∗2
D∼Z|X. In what follows we write tr for the

objective function with the understanding that it is writ-
ten in its modified form above. The partial derivative of

tr√
df−1

with respect to R2
Y∼Z|DX is

∂tr/
√

df−1
∂R2

Y ∼Z|DX

=
fr

√
(1−R2

D∼Z|X)R2
Y ∼Z|DX

+
√

R2
D∼Z|X

2(1−R2
Y ∼Z|DX

)
3
2

√
R2

Y ∼Z|DX

.

Since the partial of tr with respect to R2
Y∼Z|DX is always

positive, we have R∗2
Y∼Z|DX =Rmax

Y unconditionally, i.e.
R∗2

Y∼Z|DX always lies on the boundary.
We now turn to the partial derivative of tr√

df−1
with re-

spect to R2
D∼Z|X:

∂tr/
√

df−1
∂R2

D∼Z|X
=

−fr
√

R2
D∼Z|X+

√
R2

Y ∼Z|DX
(1−R2

D∼Z|X)

2
√

(1−R2
Y ∼Z|DX

)(1−R2
D∼Z|X)R2

D∼Z|X

.

It is straightforward to check that the second derivative of
tr√

df−1
is negative with respect to R2

D∼Z|X. Thus, when
attainable, the zero of the first partial derivative with re-
spect to R2

D∼Z|X is a maximizer. Solving for the value
that makes the first derivative zero yields:

R∗2
D∼Z|X =

Rmax
Y

f2
r +Rmax

Y

.(11)

This interior point solution is only feasible when f2
r ≥

Rmax
Y (1−Rmax

D )/Rmax
D . Otherwise, if

f2
r <Rmax

Y (1−Rmax
D )/Rmax

D ,(12)

then the partial with respect to R2
D∼Z|X is strictly positive

for all R2
D∼Z|X ≤ Rmax

D and so we obtain the boundary
solution R∗2

D∼Z|X =Rmax
D .

PROOF OF THEOREM 3. Let Z denote an (n × m)
matrix of unobserved covariates and let γ̂ denote the co-
efficient vector of Z. We are now interested in the long
regression

Y = λ̂D+Xβ̂ +Zγ̂ + ϵ̂.(13)

Consider the (n × 1) vector ZL :=Zγ̂. The regression

Y = λ̂D+Xβ̂ +ZL + ϵ̂(14)

yields the same value for λ̂; therefore, the bias induced
by Z is equal to that induced by ZL and R2

Y∼ZL|D,X =

R2
Y∼Z|D,X. On the other hand, since γ̂ is chosen solely

to maximize R2
Y∼Z|D,X, we also have that R2

D∼ZL|X ≤
R2

D∼Z|X. Now observe that the standard error formula
from (7) holds for multivariate Z if we correctly adjust
for the degrees of freedom. Further note that the bias of
ZL is a strictly increasing function of R2

D∼ZL|X . Thus,
the most adversarial choice of Z is such that R2

D∼ZL|X =

R2
D∼Z|X. We can thus assess the maximum t-statistic of a

matrix Z by considering that of a single adversarial vector
ZL and further adjusting for the degrees of freedom.

PROOF OF COROLLARY 1. For any subset XS of the
columns of observed covariate matrix X, recall that
R2

Y∼XS|D ≤ R2
Y∼X|D and R2

D∼XS
≤ R2

D∼X. Now ap-
ply the proof of Theorem 3 with the alteration that the
constraint R2

D∼ZL|X ≤ R2
D∼Z|X is not necessarily tight,

since ZL may not be adversarial for a specific dataset.

For all cases below, consider the following condition
for significance:

t∗α,df−1 ≤ tmax
R2 .(15)

PROOF OF THEOREM 4. First consider the case in
which fr = 0. This only happens if λ̂r = λ0. Since here
R2

D∼Z|X = 0, the inclusion of Z does not alter the point

estimate and we still obtain λ̂= λ0 after adjusting for Z .
Therefore, the adjusted t-statistic will be zero regardless
of the value of the standard error.

If fr > f∗
α,df−1 then we are already able to reject H0

even if Z has zero explanatory power. Otherwise, given
the constraints R2

Y∼Z|DX ≤ XRVI and R2
D∼Z|X = 0, the

expression for tmax
R2 simplifies to

tmax
XRVI,0 = max

R2
Y ∼Z|DX

fr√
1−R2

Y∼Z|DX

√
df−1

such that R2
Y∼Z|DX ≤ XRVI. This is a strictly increasing

function of R2
Y∼Z|DX and thus attains its maximum at

R∗2
Y∼Z|DX = XRVI. Thus solving for the minimum value

of XRVI that satisfies (15) is equivalent to solving for
XRVI at the equality. That is,

f∗
α,df−1 =

fr√
1− XRVI0α

.
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Squaring and rearranging terms, we obtain

XRVI0α = 1−

(
fr

f∗
α,df−1

)2

,

as desired.

PROOF OF THEOREM 5. If fr > f∗
α,df−1 then we are

already able to reject H0 even if Z has zero explanatory
power, and thus the minimal strength to reject H0 is zero.
Otherwise, consider constraints R2

Y∼Z|DX ≤ XRVI and
R2

D∼Z|X ≤ 1. From the proof of Theorem 2 we see that
tmax
R2 is an increasing function of XRVI. Thus solving for

the minimum value of XRVI that satisfies (15) is equiva-
lent to solving for XRVI at the equality. Notice that (12) is
not satisfied here. We therefore plug in the interior point
solution from Theorem 2 for tmax

R2 and solve for XRVI1α.
This results in the equation

f∗
α,df−1 =

√
f2
r + XRVI1α
1− XRVI1α

which yields the solution

XRVI1α =
f∗2
α,df−1 − f2

r

1 + f∗2
α,df−1

,

as we wanted to show.

THEOREM 7 (Closed-form expression for XRVIR
max
D

α ).
The analytical expression for XRVIR

max
D

α is

XRVIR
max
D

α =


−b+s

√
b2−4ac

2a , if 0≤f2
r<XRVI1α

(
1−Rmax

D
Rmax

D

)
XRVI1α, if XRVI1α

(
1−Rmax

D
Rmax

D

)
≤f2

r≤f∗2
α,df −1,

0, if f∗2
α,df−1 < f2

r

where

a= 1,(16)

b= −2

[
f∗2
α,df −1−(1−Rmax

D )f2
r

f∗2
α,df −1

+Rmax
D

+
2f2

r (1−Rmax
D )Rmax

D
(f∗2

α,df −1
+Rmax

D
)2

]
,(17)

c=
[

f∗2
α,df −1−(1−Rmax

D )f2
r

f∗2
α,df −1

+Rmax
D

]2
,(18)

XRVI1α =
f∗2
α,df −1−f2

r

1+f∗2
α,df −1

,(19)

and s ∈ {−1,1} is chosen to yield the valid quadratic
root, i.e., tmax

XRVI,Rmax
D

= t∗α,df−1.

PROOF OF THEOREM 7. As argued in the proofs for
Theorems 4 and 5, if f∗

α,df−1 < fr , then the minimum
strength of Z necessary to attain significance is zero. Oth-
erwise, solving for the minimum value of XRVI that satis-
fies (15) is equivalent to solving for XRVI at the equality.

Now let fr > 0. Here we have two cases. Either both R2

values reach the bound or the optimal value of R2
D∼Z|X is

an interior point. For latter case, this means the constraint
R2

D∼Z|X is not binding and thus XRVIR
max
D

α should equal
XRVI1α. Recall that tr is concave down with respect to
Rmax

D ; therefore, the optimal value of R2
D∼Z|X is the in-

terior point solution R∗2
D∼Z|X, as defined in (11), if and

only if R∗2
D∼Z|X <Rmax

D . We can simplify this condition
to be of the form,

XRVI1(1−Rmax
D )

Rmax
D

< f2
r .

It remains to solve for the case where both coordinates
reach the bound. Here, the equality in (15) simplifies to

t∗α,df−1 =
fr
√

1−Rmax
D +

√
Rmax

D XRVI√
(1−XRVI)/(df−1)

.(20)

We now solve for XRVI in (20) by squaring both sides
and taking the valid root of the quadratic equation. The
simplified quadratic form is

XRVI2−
[

2(f∗2
α,df −1−(1−Rmax

D )f2
r )

f∗2
α,df −1

+Rmax
D

+
4f2

r (1−Rmax
D )Rmax

D
(f∗2

α,df −1
+Rmax

D
)2

]
XRVI

+

[
f∗2
α,df −1−(1−Rmax

D )f2
r

f∗2
α,df −1

+Rmax
D

]2
= 0.(21)

The expressions for a, b, c in (16)-(18) immediately fol-
low from Sridharacharya-Bhaskara’s formula for quadratic
equations. Finally, we note that if fr = 0 and Rmax

D > 0

then XRVIR
max
D solution is valid. If fr = 0 and Rmax

D = 0
then we are in the XRVI0 case such that, by Theorem 4,
we cannot overturn an insignificant result.

PROOF OF THEOREM 6. The derivation of RVIα fol-
lows that of XRVIR

max
D

α very closely (see proof of Theo-
rem 7). The only difference is that when f2

r < 1 − RVI,
the equality in (15) simplifies to

t∗α,df−1 =
fr
√
1− RVI + RVI√
1− RVI

×
√

df−1

which is equivalent to

f∗
α,df−1 = fr +

RVI√
1− RVI

.(22)

Let f∆ = f∗
α,df−1 − fr . Then (22) further reduces to a

quadratic function of RVI with positive root

RVI =
1

2
(
√

f4
∆ + 4f2

∆ − f2
∆).

It remains to show that (12), i.e. f2
r ≥ 1−RVI, is equiva-

lent to

fr >
1

f∗
α,df−1

.(23)

This is equivalent to showing that RVIα is given by the
interior point solution if and only if (23) holds. To see
why, recall that for the interior point solution,

Rmax
Y =Rmax

D = RVIα =
f∗2
α,df−1 − f2

r

1 + f∗2
α,df−1

.(24)
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Plugging (24) into (12), we have

f2
r ≥ 1− RVIα = 1−

f∗2
α,df−1 − f2

r

1 + f∗2
α,df−1

which reduces to f∗
α,df−1 ≥ 1

fr
.

ASYMPTOTIC DISTRIBUTION OF R2
D∼Z|X . First con-

sider the case without observed covariates X. Under i.i.d
sampling, the asymptotic distribution of the sample cor-
relation RD∼Z is derived in Ferguson (2017, Theorem 8,
p. 52) to be √

df(RD∼Z − ρ)
d−→N (0, γ2)

where here d−→ denotes convergence in distribution, ρ is
the population correlation coefficient of D and Z , and

γ2 = c1ρ
2 − c2ρ+

Var((D−E[D])(Z −E[Z]))

Var(D)Var(Z)
,

where constants c1 and c2 depend on higher order mo-
ments of D and Z , and Var(·) denotes population vari-
ance. If D is randomized, we have that D is independent
of Z by design. Thus ρ = 0 and Var((D − E[D])(Z −
E[Z])) = Var(D)Var(Z). This simplifies the expression
of the asymptotic variance γ2 to 1, and we have√

dfRD∼Z
d−→N (0,1), and dfR2

D∼Z
d−→ χ2

1.

To extend the argument to the sample partial correlation
RD∼Z|X, first note that it can be rewritten using the FWL
Theorem (Frisch and Waugh, 1933; Lovell, 1963) as the
sample correlation RD∼Z|X = cor(Z̃, D̃), where Z̃ and
D̃ are the sample residuals of the regression of Z and D
on X, i.e, Z̃ := Z −Xθ̂ and D̃ := D −Xδ̂, and θ̂ and
δ̂ are the respective OLS coefficient estimates, which are
asymptotically normal. Now define the population coun-
terparts, Ž := Z −Xθ, Ď :=D−Xδ, where we replace
sample estimates with their corresponding population val-
ues. We note that estimation errors on θ̂ and δ̂ do not
affect the asymptotic distribution of cor(Z̃, D̃), which is
the same as that of cor(Ž, Ď)—this can be verified by
applying standard results in large sample theory to the
covariances (and variances) of sample residuals, such as
Boos and Stefanski (2013, Theorem 5.28, p. 249). Now
cor(Ž, Ď) is again a simple bivariate correlation, and we
can directly apply the result of Ferguson (2017) above.
Note this result does not rely on any parametric distribu-
tional assumptions on Ď and Ž , except for requiring that
the relevant moments are finite.
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