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Researchers trained only in a traditional regression course may thus be left 
under the impression that we should always control for everything we measure. 
However not all controls are created equal. 

Analysts have long known that some variables, when added to the regression 
equation, can in fact increase bias. Such variables have are known as “bad 
controls” in the econometrics literature.

The typical warning you find in textbooks is that “bad controls” are variables 
that could be “affected by the treatment” (i.e, “post-treatment” variables) 
[MHE, p.64]:

Although an improvement, it turns out these conditions are neither necessary 
nor sufficient for deciding whether a variable is a good or bad control.
What now?

Not all controls are created equal…
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We will see how causal diagrams can make otherwise difficult problems 
very easy to solve, by – literally – simple inspection of a diagram.
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Birth-weight paradox: Infants born to smokers were found to have higher risks 
of mortality than infants born to non-smokers. However, among infants with low 
birth-weight (LBW), this relationship was reversed. This reversal of effects has 
created many controversies in epidemiology—does it mean that maternal 
smoking is beneficial for LBW infants? 

Antebellum puzzle: An interesting puzzle of economic history is the fact that, 
during the nineteenth century in Britain and the United States, the average height 
of adult men fell even though the economic conditions of these countries 
improved alongside childhood nutrition. Does that mean better nutrition reduce 
the heights of adult men? 

These are all related to “bad controls.”

What is happening here?
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1. Here letters represent random variables (eg., X=drug, Z=income, Y=health).

Briefly causal diagrams provide a parsimonious representation of the 
qualitative aspects of the data generating process. For example, 

2. Arrows denote a (possible) direct causal effect between one variable on 
another. For instance, the arrows X→Y and Z→Y state that both the drug 
and income could possibly affect health.

Causal diagrams have become popular in the social and health sciences for 
explaining and resolving difficult problems in causal inference in a rigorous, yet 
accessible manner.

Note that no parametric assumptions need to be made regarding the functional 
form of the causal relationships, nor the distribution of variables.
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1. Mediators: X causally affects Z which causally affects Y.

X Z Y

2. Common causes:  X and Y share a common cause Z (aka confounder).

X Z Y

3. Common effects:  X and Y share a common effect Z (aka a collider). 

Any causal diagram, no matter how complicated, can be understood in terms of 
three main sources of association: (1) mediators, (2) common causes and (3) 
common effects. They form the building blocks of any causal model.

Let us understand better each of these forms of association, and when they are 
closed or opened.
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1. Mediators: X causally affects Y through Z. This is a causal path from X to Y. 
If left untouched, the path is open.

X Z Y

Example: Consider a drug (X) that affects a health outcome (Y) by lowering 
blood pressure (Z). 
Conditioning on blood pressure blocks the mechanism through which the drug 
affects health. Thus you will not see any association between drug use and 
health status among those with the same level of blood pressure.

Building blocks of a causal diagram
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 Conditioning on the common cause Z blocks the flow of association.

X Z Y

2. Common causes:  X and Y share a common cause Z (aka confounder, or 
“back-door” path). Left on its own, it is open, and it induces a non-causal 
(spurious) association between X and Y.

X Z Y

Example: Suppose that going to the opera (X) does not affect mortality (Y). 
However, rich people (Z = income) are both more likely to go to the opera and 
also more likely to be healthy. This will induce a spurious association between 
X and Y. 
Conditioning on income (Z) blocks this spurious association.
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However, conditioning on the common effect opens the path, and it induces a 
non-causal association between X and Y.

X Z Y

3. Common effects:  X and Y share a common effect Z (aka a collider).  Left 
alone, a common effect does not induce any association between its causes, 
and the path is closed.

Example: Imagine beauty (X) and talent (Y) are independent in the general 
population. However, suppose that movie agencies only hire (Z=1) actors 
whose beauty + talent exceed a certain threshold.
Even though there’s no causal relationship between beauty and talent in the 
general population, you will see a negative association between beauty and 
talent both among hired actors (Z=1) and not hired actors (Z=0).

X Z Y
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Non-Causal 
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(Spurious) Closed Open

X Z Y

X Z Y

X Z Y

To summarize:

One final rule to keep in mind:

Controlling for the effects of a variable is equivalent to partially controlling for that variable.

Most importantly for us: 
(i) conditioning on the effects of a mediator partially closes a causal path;
(ii) conditioning on the effects of a collider partially opens a non-causal path.
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Opening and closing paths.

We can now judge whether any path on a causal diagram, no matter how 
complicated, is opened or closed.

Is the path from A to F opened or closed:

A path is simply a sequence of mediators, common causes and common effects. If 
any of these elements is closed, the full path is closed.

A B C

D

E F

a) conditioning on nothing?

b) conditioning on D?

c) conditioning on D and E?
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Blocking spurious paths, and only spurious paths.

We now have all the tools we need to decide which variables to adjust for to 
identify the (total) causal effect of X on Y.

First, note that causal paths are paths consisting of a sequence of mediators.  
All other paths are non-causal.

If we are interested, then, in estimating the causal effect of X on Y, our task is 
conceptually simple:

1. We must block all spurious paths between X and Y; 
2. We must not perturb any of the (relevant) causal paths.

This is the essence of the graphical conditions known as the back-door criterion 
and the adjustment criterion. This will be our guiding principle to decide whether 
to include a variable to a regression equation.
Although simple, mastering this does require some practice. So let’s apply those 
principles in very simple examples.
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In the following set of models, the target of analysis is the average treatment 
effect (ATE) of X on Y:

Observed variables we be denoted by black dots, and unobserved variables by 
white empty circles. 

Variable Z, highlighted in red, will represent the variable whose inclusion in the 
regression equation is to be decided.

We will say that Z is a “good control” if it helps reducing (asymptotic) bias, 
“bad control” if increases bias, and “neutral control” if the addition of Z neither 
reduces or increases bias. 

ATE = E[Y1] − E[Y0]

For this last case, we will also make brief remarks about how Z affects the 
precision of the ATE estimate.

Here will focus on practicing our graphical skills. Later we will see how these 
very simple models can help you make sense of real world scenarios.
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Model 8 Model 9

In Models 8 and 9, Z is not a confounder, nor does Z block any backdoor paths. 
Likewise, controlling for Z does not open any spurious paths from X to Y.
Thus, in terms of asymptotic bias, Z is thus a “neutral control.”
As a general rule-of-thumb, however, in order to obtain more precise estimates of 
the ATE, we want to reduce the variation of the outcome (due to sources other 
than the treatment), and not reduce the variation of the treatment itself.

Thus, in Model 8, Z improves the precision of the ATE estimate;  
Whereas in Model 9 Z hurts the precision of the ATE estimate.
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We now encounter our second “pre-treatment” bad control.

Model 10

Note here that: (i) Z is “pre-treatment;”; (ii) Z is associated with X (causally); 
(ii) Z is associated with Y; and (iii) Z is associated with Y conditional on X.

Thus, Z seems like an ordinary confounder begging to be controlled.

However, analysis shows that adjusting for Z will not only fail to deconfound the 
effect of X on Y, but, in linear models, it will amplify any existing bias.
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If our target quantity is the ATE, we want to leave all channels through which the 
causal effect flows “untouched.” 

Model 11 Model 12

In Model 11, Z is a mediator of the causal effect of X on Y . Controlling for Z 
will block the very effect we want to estimate (the total effect of X on Y ), thus 
biasing our estimates (this is usually known as “overcontrol bias”). 

In Model 12, although Z is not itself a mediator of the causal effect of X on Y , 
controlling for Z is equivalent to partially controlling for the mediator M, and 
will thus bias our estimates. 
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estimate of the ATE, by restricting variations of the mediator M. 
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However, the key difference here is that Z is a cause, not an effect, of M. Thus, 
Model 13 is analogous to Model 8, and controlling for Z will be neutral in terms 
of bias, and may improve the precision of the ATE estimate in finite samples.

Contrary to folklore, not all “post-treatment” variables are inherently bad 
controls. In Model 14, Z is post-treatment, and controlling for Z does not open 
any confounding paths between X and Y. However, as before, controlling for Z 
may hurt the precision of the ACE estimate in finite samples. 
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Infants born to smokers were found to have higher risks of mortality than infants 
born to non-smokers. 
However, among infants with low birth-weight (LBW), this relationship was 
reversed. 
This reversal of effects has created many controversies in epidemiology—does it 
mean that maternal smoking is beneficial for LBW infants? 

Here X is maternal smoking, Y infant mortality, Z birth-
weight, and U stands for unobserved risk-factors (such as 
birth-defects and malnutrition), that could also affect 
birth-weight. 
Note that stratifying the analysis by birth-weight would 
induce a spurious association between smoking and 
mortality due to the competing risk-factors. 
LBW infants of non-smokers need to have alternative 
causes for their LBW (such as malnutrition), and such 
causes could also lead to higher mortality. 
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An interesting puzzle of economic history is the fact that, during the nineteenth 
century in Britain and the United States, the average height of adult men fell even 
though the economic conditions of these countries improved alongside childhood 
nutrition.
Does better nutrition reduce the heights of adult men? 

One possible explanation for such a paradoxical finding is 
selection bias.
Researchers do not use data from the whole population, 
but from individuals enlisted in the military or in prison, 
which is equivalent to conditioning on colliders.  
Consider the case of prison records. Let X be childhood 
nutrition, Y adult height, and let Z be an indicator of 
whether the individual was arrested. 
Here one could argue that both childhood nutrition and 
adult height have pathways to committing a crime through 
socioeconomic opportunities, leading to selection bias. 
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When considering multiple controls, the status of a single control as “good” or 
“bad” may change depending on the context of the other variables under 
consideration. 
Nevertheless, the main lessons from our illustrative examples remain. 
A set of control variables Z will be “good” if: 
(i) it blocks all non-causal paths from the treatment to the outcome; 
(ii) it leaves any mediating paths from the treatment to the outcome “untouched” 

(since we are interested in the total effect); and, 
(iii)it does not open new spurious paths between the treatment and the outcome 

(e.g., due to colliders). 
As to efficiency considerations, we should give preference to those variables 
“closer” to the outcome, in opposition to those closer to the treatment—so long 
as, of course, this does not spoil identification 
You don’t need to do it by hand! 
There is open-source software with efficient procedures to identify (optimal) 
adjustment sets for you (dagitty, causal fusion, etc).
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Challenge:

36

Goal: estimate the joint effect of X1 and X2 on Y.

Question: which variables should you include in the regression equation?

Apply the same first principles: 
(i) do not close relevant causal paths, 
(ii) block spurious paths.

Answer: include both Z1 and Z2. Note again another example where post-
treatment variables are necessary for identification.
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We have seen through several illustrative examples how simple graphical criteria 
can be used to decide when a variable should (or should not) be included in a 
regression equation—and thus whether it can be deemed a “good” or “bad” 
control. 

Many of these examples act as cautionary notes against prevailing practices. We 
have seen, for instance, that:
- Not all pre-treatment variables are “good” controls;
- Not all post-treatment variables are “bad” controls; some may even be 

necessary for identification.

In all cases, structural knowledge is indispensable for deciding whether a 
variable is a good or bad control. 
Graphical models provide a natural language for articulating such knowledge, as 
well as efficient tools for examining its logical ramifications. 
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